Total antioxidant capacity as an important element in the assessment of soil properties for the production of high-quality agricultural and horticultural raw materials with health-promoting properties
More details
Hide details
Department of Plant Protection, University of Life Sciences, Leszczyńskiego 7, 20-069, Lublin, Poland
Final revision date: 2019-08-16
Acceptance date: 2019-08-22
Publication date: 2019-10-16
Corresponding author
Barbara Skwaryło-Bednarz   

Department of Plant Protection, University of Life Sciences, Leszczyńskiego 7, 20-069, Lublin, Poland
Acta Agroph. 2019, 26(2), 61-76
Soil is one of the most important elements of the natural environment, which is characterized by the highest resistance to degradation. This is the first element in the trophic chain and may have a different effect on the health condition of people, primarily through the consumption of plant raw materials. One of the effects of soil contamination is the formation of excess free radicals in cells, which leads to oxidative stress. Free radicals contribute to the damage of lipids, proteins, mitochondrial and nuclear DNA and disorders of signalling pathways responsible for the broad spectrum of cellular response. The result of this is the emergence of many diseases, such as cancer, cardiovascular disorders, osteoporosis, inflammation, Alzheimer's disease, Parkinson's disease. However, we are able to protect ourselves from the excess of free radicals found in soils and cultivate plants in the best quality soils. The best way to assess soil quality is to determine its total antioxidant capacity using the different methods available (FRAP method, CUPRAC method, FOLIN-CIOCALTE method, ABTS+ method, DPPH+ method). Such designations make it possible to assess the soil in terms of its suitability for the production of high-quality food or the possible need for reclamation. It should be noted that soil quality can be improved by providing antioxidant compounds to it, which in turn will increase the amount of antioxidants in agricultural raw materials. One of the ways to achieve this is balanced fertilization, especially organic, but also mineral.
The Author does not declare conflict of interest
Aminifard M.H., Aroiee H., Azizi M., Nemati H., Jaafar H.Z.E., 2013. Effect of compost on antioxidant components and fruit quality of sweet pepper (Capsicum annuum L.). Journal of Central European Agriculture, 14(2), 525-534,
Apak R., Güçlü K., Özyürek M., Karademir S.E., Altun M., 2005. Total antioxidant capacity assay of human serum using copper (II) – neocuproine as chromogenic oxidant: the CUPRAC method. Free Radical Res., 39, 949-961,
Apak R., Güçlü K., Özyürek M., Ҫelik S.E., 2008. Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Microchim. Acta, 160, 413-419,
Baltrusaiyte V., Venskutonis P.R., Ceksteryte V., 2007. Radical scavenging activity of floral origin honey and beebread phenolics extracts. Food Chem., 101, 502-514,
Baran S., 2000. Assessment of the state of degradation and soil remediation (in Polish). Wyd. AR, Lublin.
Baran S., Martyn W., Krzepiłko A., Skwaryło B., Świeciło A., Onuch-Amborska J., 1999. Adaptation of the method developed by Catherine Rice-Evans and Nicholas Miller to determine the antioxidant activity of the water solution of vermicompost. Fol. Univ. Stetin., 200, Agriculturae, 77, 11-14 (in Polish).
Barto H., Fołta M., Zachwieja Z., 2005. Application of FRAP, ABTS and DPPH methods in the study of antioxidant activity of food products (in Polish). Now. Lek., 74, 4, 510-513.
Bartosz G., 2003. The second face of oxygen (in Polish). Wyd. Nauk. PWN, Warszawa.
Bednarek R., Dziadowiec H., Pokojska U., Prusinkiewicz Z., 2005. Ecological and soil research (in Polish). Wyd. Nauk. PWN, Warszawa.
Benzie I.F.F., Strain J.J., 1996. The ferric reducing ability of plasma (FRAP) as a measure of Antioxidant Power: The FRAP Assay. Anal. Biochem., 239, 70-76,
Benzie I.F.F., Strain J.J., 1999. Ferric reducing/antioxidant power assay - direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Method. Enzymol., 299, 15-2,
Bímová P., Pokluda R., 2009. Impact of organic fertilizers on total antioxidant capacity in head cabbage. Hort. Sci. (Prague), 36(1), 21-25,
Bombolewska K., Dróżdż J., Koim-Puchowsk;a B., 2013. The influence of the environment on the human antioxidant barrier. J. Ecol. Health, 17(4), 175-178.
Combs G.F., 2001. Selenium in global food systems. Br. J. Nutr., 85(5), 517-547, 10.1079/BJN2000280.
Cybul M., Nowak R., 2008. Review of methods used in the analysis of antioxidative properties of plant extracts (in Polish). Herba Pol., 54(1), 69-78.
Dobrzański G., Dobrzańska B.M., Kiełczowski D., 1997. Protection of the natural environment (in Polish). Wyd. Ekonomia i Środowisko, Białystok.
Evans C., Miller N.J., 1994. Methods Enzymology. Academic Press. Inc., 234, 279-293.
Frątczak J., 1996. Project of the theory of human education by the natural environment (in Polish). Zeszyty Naukowe Wyższej Szkoły Pedagogicznej w Bydgoszczy. Studia Pedagogiczne, 24, 51-68.
Georgé S., Brat P., Alter P., Amiot M.J., 2005. Rapid determination of polyphenols and vitamin C in plant-derived products. J. Agr. Food Chem., 53, 1370-1373,
Górski M., 2006. Legal protection of lands and waters. In: Reclamation and revitalization of degraded areas (Eds S. Zawada) (in Polish). Wyd. PZITS Poznań, 11-35.
Halliwell B., Gutteridge J.M.C., 1995. The definition and measurement of antioxidants in biological systems. Free Radic. Biol. Med., 18(1), 25-26,
Hammel K.E., Kapich A.N., Jensen J.R.K.A., Ryan Z.C., 2002. Reactive oxygen species as agents of wood decay by fungi. Enzyme Microb. Technol., 30, 445-453,
Hartikainen H., 2005. Biogeochemistry of selenium and its impact on food chain quality and human health. J. Trace Elem. Med. Biol., 18(4), 309-318,
Jarosz Z., 2006. Influence of the type of potassium fertilization on the chemical composition of leaves and fruits of tomato grown in various substrates (in Polish). Acta Sci. Pol. - Hortoru., 5(1), 11-18.
Jodko-Piórecka K., Litwinienko G., 2010. Oxidative stress in neurodegenerative diseases - potential antioxidative properties of catecholamines (in Polish). Post. Bioch., 56(3), 248-259.
Karbarz M., 2010. Sources of formation and environmental impact of free radicals (in Polish). Zeszyty Naukowe SGSP, 40, 59-67.
Karpińska A., Gromadzka G., 2013 Oxidative stress and natural antioxidant mechanisms – importance in the process of neurodegeneration. From molecular mechanisms to therapeutic strategies (in Polish). Postepy Hig. Med. Dosw., 67, 43-53,
Kopeć K., 2008. Man in the environment and related risks. In: Threats in the modern world as a subject of geographic education (Eds J. Michalski) (in Polish). Wyd. Bernardinum, Pelplin, 60-72.
Korzeniowski P., 2012. Ecological safety as a legal institution for environmental protection (in Polish). Wyd. Uniwersytetu Łódzkiego.
Kośla T., 1999. Biological and chemical pollution of agricultural products (in Polish). Wyd. SGGW, Warszawa.
Krzepiłko A., 2005. Reactive oxygen species, antioxidants and human diseases (in Polish). Zamojskie Studia i Materiały VII, 2, 35-45.
Krzeszowiak J., 2013. Oxidative stress and the high-mountain environment (in Polish). Med. Środow. 16(1), 90-97.
Łata B., Wińska-Krysiak M., 2006. The chemical composition of kale grown on two types of soil. Acta Agroph. 7(3), 663-670.
Martinez-Cayuela M., 1995. Oxygen Free Radicals and Human Disease. Biochimie., 77, 147-161,
Mrozowska J., 1999. Laboratory of general and environmental microbiology (in Polish). Wyd. Politechniki Śląskiej, Gliwice.
Myśków W., Stachyra A., Zięba S., Masiak D., 1996. Soil biological activity as an indicator of its fertility and fertility (in Polish). Rocz. Gleb., 47(1/2), 89-99.
Pękal A.J., 2014. Effect of selection of analytic procedure on the designation of properties of antioxidant food samples (in Polish). Rozprawa doktorska, Wyd. Uniwersytet Warszawski, Warszawa.
Pham-Huy L.A., He H., Pham-Huy C., 2008. Free radicals, antioxidants in disease and health. Int. J. Biomed Sci., 4(2), 89-96.
Prior R.L., Wu X., Schaich K., 2005. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agr. Food Chem., 53, 4290-4302,
Ratajczak M., Gietka-Czernel M., 2016. The influence of selenium to human health (in Polish). Post. N. Med., XXIX (12), 929-933.
Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice Evans C., 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol. Med., 26, 1231-1237,
Rimmer D.L., 2006a. Free radicals, antioxidants, and soil organic matter recalcitrance. Eur. J. Soil Sci., 57, 91-94,
Rimmer D.L., 2006b. Measuring antioxidants in soil organic matter. In: Proceedings of 13th Meeting of the International Humic Substances Society, 613-616.
Rosada J., Przewocka M., 2017. Remediation and reclamation of agricultural land covered by the impact of the steel industry (in Polish). Zeszyty Naukowe Uniwersytetu Zielonogórskiego – Inżynieria Środowiska, 48, 69-82,
Sander J., 2008. Selected aspects of environmental processes of holistic nature education in the light of the idea of sustainable development (in Polish). Problemy Ekorozwoju – Problems of Sustainable Development, 3(2), 69-80.
Schepetkin I., Khlebnikova A., Kwon B.S., 2002. Medical drugs from humus matter: Focus on mumie. Drug Develop. Res., 57(3), 40-159,
Sharma R.K., Agrawal M., 2005. Biological effect of heavy metals: an overview. J. Environ. Biol., 26(2), 301-313.
Shiow Y. Wang, Hsin-Shan L., 2003. Compost as a soil supplement increases the level of antioxidant compounds and oxygen radical absorbance, capacity in strawberries, J. Agric. Food Chem., 6844-6850,
Sies H., 1995. Oxidative stress: Damage to intact cells and organs. philos. Trans. Soc. Lond. Biol. Sci., 17(311), 617-31.
Skwaryło-Bednarz B., Krzepiłko A., 2007. Biological and antioxidant properties of soils from the protected zone of Roztocze National Park. Pol. J. Environ. Stud., 16(3A), 251-254.
Skwaryło-Bednarz B., Krzepiłko A., 2008. Differentiated NPK fertilization in broad-leaved amaranth cultivation (Amaranthus cruentus L.) and total antioxidant capacity of leaves and soil under this plant (in Polish). Acta Agroph., 12(1), 173-181.
Sroka Z., Gamian A., Cisowski W., 2005. Low molecular weight antioxidants of natural origin (in Polish). Postępy Hig. Med. Dośw., 59, 34-41.
Stepnowski P., Synak E., Szafranek B., Kaczyński Z., 2010. Monitoring and analytics of pollutants in the environment (in Polish). Wyd. Uniwersytetu Gdańskiego, Gdańsk.
Szajdek A., Borowska J., 2004. Antioxidant properties of food of plant origin. Żywn.-Nauk (in Polish). Technol. Jakość, 4(41), 5-28.
Umińska R., 1990. Selenium in human environment. Rocz. Panstw. Zakł. Hig., 41(1-2), 25-34.
Verma S., Sharma A., Kumar R., Kaur C., Arora A., Shah R., Nain L., 2015. Improvement of antioxidant and defense properties of Tomato (var. Pusa Rohini) by application of bioaugmented compost. Saudi J. Biol. Sci., 22(3), 256-264,
Wiktorowska-Owczarek A., Nowak J., 2010. Pathogenesis and prophylaxis of AMD: the role of oxidative stress and antioxidants (in Polish). Postępy Hig. Med. Dośw., 64, 333-343.
Wilczyńska A., 2009. Methods for determining the antioxidative activity of bee honeys (in Polish). Bromat. Chem. Toksykol., 42(3), 870-874.
Wolański N., 1990. Health from an environmental perspective. In: Human-environment-health (Eds J. Kopczyński, A. Siciński) (in Polish). Wyd. Ossolineum, Wrocław, 110.
Xiong Z.T., Wang H., 2005. Copper toxicity and bioaccumulation in Chinese cabbage (Brassica pekinensis Rupr.) Environ. Toxicol., 20(2), 188-194,
Yıldız L., Başkan K.S., Tütem E., Apak R., 2008. Combined HPLC-CUPRAC (cupric ion reducing antioxidant capacity) assay of parsley, celery leaves, and nettle. Talanta, 77, 304-313,
Journals System - logo
Scroll to top