RESEARCH PAPER
Thermal conditions of soybean cultivation in Siedlce region
Paweł Cała 1
,  
Joanna Cała 1
,  
Elżbieta Radzka 1  
,  
 
 
More details
Hide details
1
Faculty of Natural Sciences, Siedlce University on Natural Sciences and Humanities
CORRESPONDING AUTHOR
Elżbieta Radzka   

Faculty of Natural Sciences, University of Natural Sciences and Humanities in Siedlce, Prusa 14, 08-110, Siedlce, Poland
Publish date: 2019-03-28
Final revision date: 2019-03-07
Acceptance date: 2019-03-07
 
Acta Agroph. 2019, 26(1), 15–24
KEYWORDS
TOPICS
ABSTRACT
We observe an increase of air temperature in the world which, apart from negative effects, gives opportunities for growing new plant species. A good example of this phenomenon is soybean (Glycine max L.). Not only soybean reveals valuable nutritional properties but also the plant is an excellent element of a balanced crop rotation and is a good forecrop for follow-up plants, especially cereals. Soybean shows phytomelioration and phytosanitary properties. This plant has a well-developed root system which allows penetration of deeper soil layers. As a consequence, the soil is well aerated. In addition, soya cleans the field position off the stalk base diseases. The purpose of this thesis is to display the characteristic thermal conditions of soybean cultivation in Siedlce region from 1971 to 2015. The analysis of thermal conditions was based on daily, monthly and annual average air temperatures in Siedlce during the vegetation season (April-October). The sum of effective temperatures was also defined as the sum of daytime temperatures above 6, 10 and 15°C during the growing season. Basic distribution characteristics are specified in the article: arithmetic mean, minimum and maximum. The direction and significance of the trend of changes in analysed parameters were determined on the basis of linear trend equations. The significance of the directional coefficient of the trend was assessed with Student’s t-test at the significance level of α = 0.05.
 
REFERENCES (22)
1.
Asekova S., Kulkarni K. P., Patil G., Kim M., Song J. T., Nguyen H. T., Grover S. J., Lee J.D., 2016. Genetic analysis of shoot fresh weight in a cross of wild and cultivated (G. max) soybean. Mol. Breed., 36, 1-15. https://doi.org/10.1007/s11032....
 
2.
Asekova S., Shannon J. G., Lee J.D. 2014. The current status of forage soybean. Plant Breed. Biotech., 2, 334-341, https://doi.org/10.9787/PBB.20....
 
3.
Asseng S., Ewert F., Martre P., Rötter R. P., Lobell D. B., Cammarano D., Kimball B.A., Ottman M.J., Wall G.W., White J.W., Reynolds M.P., Alderman P.D., Prasad P.V.V., Aggarwal P. K., Anothai J., Basso B., Biernath C., Challinor A.J., De Sanctis G.,Thorburn P. J., Waha K., Wang E., Wallach D., Wolf J., Zhao Z., Zhu Y., 2015. Rising temperatures reduce global wheat production. Nature Climate Change, 5(2), 143-147, https://doi.org/10.1038/nclima....
 
4.
Boros L., Wawer A., 2016. Another stage of popularisation and expansion of soybean cultivation in the conditions of Poland (in Polish). Rośliny strączkowe i motylkowate drobnonasienne, 3, 47-52.
 
5.
Chmielewski F., Rötzer T., 2001. Response of tree phenology to climate change across Europe. Agricult. Forest Meteorol., 108, 101-112, https://doi.org/10.1016/S0168-....
 
6.
Fehr W.R., Caviness C.E., Burmood D.T., Pennington J.S., 1971. Stage of development descriptions for soybeans. Glycine max (L.). Merrill. Crop Sci., 11, 929-931, https://doi.org/10.2135/cropsc....
 
7.
Gendron St-Marseille A.F., Bourgeois G., Brodeur J., Mimee B., 2019. Simulating the impacts of climate change on soybean cyst nematode and the distribution of soybean. Agricultural and Forest Meteorology, 264, 178-187, https://doi.org/10.1016/j.agrf....
 
8.
GUS, 2017. Crop production in 2016. Warszawa.
 
9.
GUS, 2018. Crop production in 2017. Warszawa.
 
10.
Jaskulska M., Kozłowski J., Kozłowska M., 2017. Evaluation of soybean cultivars [Glycine max (L.) Merr.] susceptibility to damage caused by Arion vulgaris Moquin Tandon. Arion rufus (Linnaeus) and Deroceras reticulatum (O.F. Müller). Prog. Plant Prot., 57, 66-69, http://dx.doi.org/10.14199/ppp....
 
11.
Jumrani K., Bhatia V.S., 2018. Impact of combined stress of high temperature and water deficit on growth and seed yield of soybean. Physiol. Mol. Biol. Plants., 24, 37, https://doi.org/10.1007/s12298....
 
12.
Kulkarni K.P., Tayade R., Asekova S., Song J.T., Shannon J.G., Lee J.D., 2018. Harnessing the Potential of Forage Legumes, Alfalfa, Soybean and Cowpea for Sustainable Agriculture and Global Food Security. Frontiers in plant science, 9, 1314. https://doi.org/10.3389/fpls.2....
 
13.
Lobell D.B., Field C.B., 2007. Global scale climate-crop yield relationships and the impacts of recent warming. Environmental Research Letters, 2(1), 7 , https://doi.org/10.1088/1748-9....
 
14.
Menzel A., Sparks T.H., Estrella N., Koch E., Aasa A., Ahas R., Alm-Kubler K., Bissolli P., Braslavska O., Briede A., Chmielewski F.M., Crepinsek Z., Curnel Y., Dahl A., Defila C., Donnelly A., Filella Y., Jatczak K., Mage F., Mestre A., Nordli O., Penuelas J., Pirinen P., Remisova V., Scheifinger H., Striz M., Susnik A., Van Vliet A.J.H., Wielgosaski R., Zach S., Zust A., 2006. European phenological response to climate change matches the warming pattern. Global Change Biol., 12(10), 1969-1976, https://doi.org/10.1111/j.1365....
 
15.
Ruane A.C., Antle J., Elliott J., Folberth C., at al., 2018. Biophysical and economic implications for agriculture of +1.5° and +2.0°C global warming using AgMIP Coordinated Global and Regional Assessments. Clim. Res., 76, 17-39.
 
16.
Salvagiotti F., Cassman K.G., Specht J.E., Walters D.T., Weiss A., Dobermann A., 2008. Nitrogen uptake fixation and response to fertilizer N in soybeans: a review. Field Crops Res., 108, 1-13, https://doi.org/10.1016/j.fcr.....
 
17.
Scheifinger H., Menzel A., Koch E., Peter C., 2003. Trends of spring time frost events and phenological dates in Central Europe. Theor. Appl. Climatology, 74(1-2), 41-51. https://doi.org/10.1007/s00704....
 
18.
Stuczyński T., Demidowicz G., Deputat T., Górski T., 2000. Adaptation scenarios of agriculture in Poland to future climate changes. Environmental Monitoring and Assessment, 61, 133-144, https://doi.org/10.1023/A:1006....
 
19.
Sulewski P., Czekaj S., 2015. Climate and institutional changes versus predicted economic conditions of farms (in Polish). Problems of Agricultural Economics, 342(1), 74-100, https://doi.org/10.5604/004416....
 
20.
Sulikowska A., Wypych A., Ustrnul Z., Czekierda D., 2016. Variability of thermal resources in Poland as a result of ongoing climate change Acta Sci. Pol. Formatio Circumiectus, 15(2), 127-139, https://doi.org/10.15576/ASP.F....
 
21.
Uscka-Kowalkowska J., Kejna M., 2009. Variability of temperature and precipitation conditions at Koniczynka (Chełmno lakeland) in the years 1994-2007. Acta Agroph., 14(1), 203-219.
 
22.
Watson C.A., Reckling M., Preissel S., Bachinger J., Bergkvist G., Kuhlman T., Lindstrom T., Nemecek T., Vanhatalo A., Zander P., Murphly-Bokern D., Stoddard F.L., 2017. Grain legume production and use in European agricultural systems. Adv. Agron., 144, https://doi.org/10.1016/bs.agr....
 
eISSN:2300-6730
ISSN:1234-4125