The effect of soil conditioners on yield of dry matter, protein, and sugar in grass
More details
Hide details
Department of Grassland and Green Areas Creation, Siedlce University of Natural Sciences and Humanities ul. B. Prusa 14, 08-110 Siedlce
Publication date: 2018-06-04
Acta Agroph. 2018, 25(1), 45–58
A three-year field experiment was set up in the experimental facility of the University of Natural Sciences and Humanities in Siedlce (52°12'N, 22°28'E) in the autumn of 2011. It was carried out in a split-plot design, in three replicates, with plots of 3 m2 as experimental units. The purpose of the research was to examine whether soil conditioners (UGmax, Eko-Użyźniacz, Humus Active Papka) available on the market and used in farming substantially increase the yield of dry matter, together with total protein and soluble carbohydrate content, in selected grass species (Dactylis glomerata L., Lolium perenne L.). Out of all treatments, UGmax with mineral fertilisation increased the yield of dry matter, total protein, and soluble carbohydrates to the highest level. The soil conditioners applied in the experiment positively affected the content of nutrients, which could have contributed to an increase in forage intake by animals. These results confirm the advantages of their use in organic farming, creating the possibility of a partial reduction of mineral fertilisers use.
Wpływ preparatów biologicznych na plon suchej masy, białka ogólnego oraz cukru dla wybranych gatunków traw pastewnych
preparaty biologiczne, plon suchej masy, plon białka, plon cukru, trawy, Dactylis glomerata L, Lolium perenne L
Trzyletnie doświadczenie polowe założono jesienią 2011 roku na terenie obiektu doświadczalnego (52°12'N, 22°28'E) należącego do Uniwersytetu Przyrodniczo-Humanistycznego w Siedlcach. Eksperyment założono w trzech powtórzeniach w układzie split-plot, a obiekt doświadczalny stanowiło poletko o powierzchni 3 m2. Celem badań było sprawdzenie czy dostępne na rynku preparaty biologiczne (UGmax, Eko-Użyźniacz, Humus Active Papka) stosowane w rolnictwie ekologicznym, w istotnym stopniu zwiększą parametry ilościowe paszy jakimi są plon suchej masy, plon białka ogólnego oraz plon węglowodanów rozpuszczalnych, na przykładzie wybranych gatunków traw pastewnych (Lolium perenne L., Dactylis glomerata L.). Spośród zastosowanych kombinacji nawozowych w najwyższym stopniu na poziom plonowania suchej masy paszy, białka ogólnego jak i węglowodanów rozpuszczalnych wpłynęło łączne stosowanie preparatu UGmax z nawożeniem mineralnym NPK. Zastosowane w badaniach biopreparaty glebowe pozytywnie wpływały na poziom plonowania testowanych parametrów, co mogło przyczynić się do wzrostu pobrania paszy przez zwierzęta. Wyniki te potwierdzają zasadność stosowania ich w rolnictwie ekologicznym, stwarzając jednocześnie możliwość częściowego ograniczenia nawożenia mineralnego.
Bertilsson J., Akerlind M., Eriksson T., 2017. The effect of high-sugar ryegrass/red clover silage diets on intake, production, digestibility, and N utilization in dairy cows, as measured in vivo and predicted by the NorFor model. J. Dairy Sci., 100(10), 7990-8003, doi:10.3168/jds.2017-12874.
Billman E.D., Goff B.M., Baldwin B.S., Prince K., Phillips T.D., 2017. Effects of vegetative cool-season grasses on forage removal by dairy heifers. Agron. J., 109(4), 1540-1550, doi: 10.2134/agronj2016.10.0598.
Brussaard L. de Ruiter P.C., Brown G.G., 2007. Soil biodiversity for agricultural sustainability. Agr. Ecosy. Environ., 121(3), 233-244, doi: 10.1016/j.agee.2006.12.013.
Butkute B., Lemeziene N., Kanapeckas J., Navickas K., Dabkevicius Z., Venslauskas K., 2014. Cocksfoot, tall fescue and reed canary grass: Dry matter yield, chemical composition and biomass convertibility to methane. Biomass Bioenerg., 66, 1-11, doi: 10.1016/j.pbi.2008.03.002.
Daly M.J., Stewart D.P.C., 1999. Influence of “effective microorganisms” (EM) on vegetable production and carbon mineralization – a preliminary investigation. J. Sustain. Agr., 14(2/3), 15-25, doi:10.1300/J064v14n02_04.
Elsaesser M., Engel S., Breunig J., Thumm U., 2014. Increasing protein yields from grassland by reseeding of legumes. Grassland Sci. Eur., 19, 880-883.
Foito A., Byrne S.L., Shepherd T., Stewart D., Barth S., 2009. Transcriptional and metabolic profiles of Lolium perenne L. genotypes in response to a PEG-induced water stress. Plant Biotechnol. J., 7(8), 719-732, doi:10.1111/j.1467-7652.2009.00437.x.
Fulkerson W.J., Donaghy D.J., 2001. Plant-soluble carbohydrate reserves and senescence – key criteria for developing an effective grazing management system for ryegrass-based pastures: a review. Aust. J. Exp. Agr., 41(2), 261-275, doi: 10.1071/EA00062.
Gyaneshwar P., Naresh Kumar G., Parelih L.J., Poole P.S., 2002. Role of soil microorganisms in improving P nutrition of plant. Plant Soil, 245, 83-93, doi:10.1023/A:1020663916259.
Haigh P.M., 1995. The composition of first-cut grass for ensilage in England and Wales from 1988 to 1991. Grass Forage Sci., 50(1), 63-67, doi: 10.1111/j.1365-2494.1995.tb02295.x.
Hammond K.J., Burke J.L., Koolaard J.P., Muetzel S., Pinares-Patino C.S., Waghorn G.C., 2013. Effects of feed intake on enteric methane emission from sheep fed fresh white clover (Trifolium repens) and perennial ryegrass (Lolium perenne) forages. Anim. Feed Sci. Tech., 179, 1-4, 121-132.
Hammond K.J., Hoskin S.O., Burke J.L., Waghorn G.C., Koolaard J.P., Muetzel S., 2011. Effect of feeding fresh white clover (Trifolium repens) or perennial ryegrass (Lolium perenne) on enteric methane emission from sheep. Anim Feed Sci Tech, 166-167, 398-404, doi:10.1016/j.anifeedsci.2011.04.028.
Huhtanen P., Broderick G., 2016. Improving utilisation of forage protein in ruminant production by crop and feed management. Grass Forage Sci. 61, 340-349.
Johansen M., Soegaard K., Weisbjerg M.R., 2016. Leaf/tem ratio as a tool to estimate field losses. Evaluation in dairy cows in early lactation. Grass Forage Sci., 61, 232-234.
Maleux K., Van den Ende W., 2007. Levans in excised leaves of Dactylis glomerata: Effects of light, sugars, temperature and senescence. J. Plant Biol., 50(6), 671-680, doi:10.1007/BF03030612.
Moorby M.J., Evans R.T., Scollan N.D., MacRae J.C., Theodorou M.K., 2006. Increased concentration of water-soluble carbohydrate in perennial ryegrass (Lolium perenne L.). Evaluation in dairy cows in early lactation. Grass Forage Sci., 61, 52-59, doi:10.1111/j.1365-2494.2006.00507.x.
Peyraud J.L., Peeters A., 2016. The role of grassland based production system in the protein security. The multiple roles of grassland in the European bioeconomy. EGF. Grassland Sci. Eur., 21, 29-43.
Peyraud J.L., van den Pol-Van Dasselaar A., Collins R., Huguenin-Elie O., Dillon P., Peeters A., 2014. Multispecies swards and multi scale strategies for multifunctional grassland-base ruminant production system: an overview of the FP7-MultiSward Project. The Future of European Grasslands. EGF. Grassland Sci. Eur., 19, 695-715.
Rawnsley R.P., Donaghy D.J., Fulkerson W.J., Lane P.A., 2002. Changes in the physiology and feed quality of cocksfoot (Dactylis glomerata L.) during regrowth. Grass Forage Sci., 57(3), 203-2011, doi:10.1046/j.1365-2494.2002.00318.x.
Robins J.G., Bushman B.S., Feuerstein U., Blaser G., 2016. Variation and correlations among European and North American Orchardgrass germplasm for herbage yield and nutritive value. Agronomy-Basel 6(4), 61, doi: 10.3390/agronomy6040061.
Roche J.R., Turner L.R., Lee J.M., Edmeades D.C., Donaghy D.J., Macdonald K.A., Penno J.W., Berry D.P., 2009. Weather, herbage quality and milk production in pastoral systems. 3. Inter-relationships and associations between weather variables and herbage growth rate, quality and mineral concentration. Anim. Prod. Sci., 49(3), 211-221, doi: 10.1071/EA07309.
Sanada Y., Tamura K., Yamada T., 2010. Relationship between water-soluble carbohydrates in fall and spring and vigor of spring regrowth in orchardgrass. Crop Sci., 50, 380-390, doi:10.2135/cropsci2009.01.0031.
Skowera B., Puła J., 2004. Pluviometric extreme conditions in spring season in Poland in the years 1971-2000. Acta Agroph. 3(1), 171-177.
Sosnowski J., 2012. Reaction of Dactylis glomerata L., Festuca pratensis Huds. and Lolium perenne L. to microsoil conditioners fertilizer and mineral fertilization. Acta Sci. Pol., Agricultura, 11(1), 91-98.
Sosnowski J., Jankowski K., Domański P., 2016. Evolution of total protein content and the ratio of sugar-protein in dry matter of Dactylis glomerata and Festuca pratensis varieties depending on the type of soil. American J. Exp. Agric., 10(6), 1-8, doi: 10.9734/AJEA/2016/22110.
Systematics of Polish soil. Annals of Soils Science, 62, 3, 2011.
Szczepanek M., Wilczewski E., 2011. Effect of humic substances on germination of wheat and barley under laboratory conditions. Acta Sci. Pol., Agricultura, 10(1), 79-86.
Tarakanovas P., Chomiak M., 2008. Evaluation of dry matter yield and its stability for cocksfoot varieties. Zemdiryste, 95(1), 153-161.
Tas B.M., Taweel H.Z., DMit H.J., ElgerDMa A., Dijkstra J., Tamminga S., 2006. Effects of perennial ryegrass cultivars on milk yield and nitrogen utilization in grazing dairy cows. J. Dairy Sci., 89, 3494-3500, doi:10.3168/jds.S0022-0302(06)72388-8.
Van Eekeren N., Bos M., de Wit J., Keidel H., Bloem J., 2010. Effect of individual grass species and grass species mixtures on soil quality as related to root biomass and grass yield. Appl. Soil Ecol., 45(3), 275-283, doi: 10.1016/j.apsoil.2010.05.003.
Vogel J., 2008. Unique aspects of the grass cell wall. Current Opinion in Plant Biology, 11(3), 301-307, doi: 10.1016/j.pbi.2008.03.002.
Wilkins P.W., Humphreys M.O., 2003. Progress in breeding perennial grasses for temperate agriculture. J. Agr. Sci., 140(2), 129-150, doi: 10.1017/S0021859603003058.