RESEARCH PAPER
Study on changes and relationships of physiological and morphological parameters of rye subjected to soil drought stress
 
More details
Hide details
1
Katedra Fizjologii Roślin i Biochemii, Zachodniopomorski Uniwersytet Technologiczny w Szczecinie, WKŚiR, Katedra Fizjologii Roślin i Biochemii
2
Katedra Genetyki, Hodowli i Biotechnologii Roślin, Zachodniopomorski Uniwersytet Technologiczny w Szczecinie
3
Instytut Fizjologii Roślin, Polska Akademia Nauk
CORRESPONDING AUTHOR
Katarzyna Monika Malinowska   

Katedra Fizjologii Roślin i Biochemii, Zachodniopomorski Uniwersytet Technologiczny w Szczecinie, WKŚiR, Katedra Fizjologii Roślin i Biochemii, ul. Słowackiego 17, 71-434 Szczecin, Polska
Publication date: 2018-08-16
Final revision date: 2018-07-18
Acceptance date: 2018-07-19
 
Acta Agroph. 2018, 25(3), 261–275
KEYWORDS
TOPICS
ABSTRACT
The study was aimed at the evaluation of the impact of drought stress on the efficiency of the photosynthetic apparatus of rye inbred line GULbw, evaluated based on measurements of chlorophyll fluorescence and gas exchange parameters, water balance, assimilation pigments and morphological characters, and by the analysis of the relationship between these parameters. The experiment was performed on the rye inbred line GULbw (original name: Gülzow 661-67, accession numbers: GueR 412; R 1599), obtained from the gene bank of The Federal ex situ Gene Bank for Agricultural and Horticultural Crop Species of The Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben. Because of drought, the PSII (photosystem PS II) performance index was reduced, and the decrease tendency of the PI (overall performance index of PSII) value intensified with the length of the stress period. The tested rye line did not exhibit any considerable variability of the maximum quantum efficiency of the PS II (Fv/Fm). Significant differences in the intensity of transpiration, stomatal conductance, and substomatal concentration of CO2 was determined on day 18 of drought. A significant positive value of the correlation coefficient r was found between PLSN, LSW, LSGN, LSGW, and E, gs, ci.
METADATA IN OTHER LANGUAGES:
Polish
Zmiany i zależności parametrów fizjologicznych i morfologicznych żyta poddanego stresowi suszy glebowej
morfologia, fotosynteza, Secale cereale L
Celem badań była ocena wpływu stresu suszy na sprawność aparatu fotosyntetycznego żyta odmiany Gulz, którą oceniono na podstawie pomiarów parametrów fluorescencji chlorofilu oraz wymiany gazowej, bilansu wodnego, barwników asymilacyjnych i parametrów morfologicznych. Eksperyment przeprowadzono na linii wsobnej żyta GULbw (oryginalna nazwa: Gülzow 661-67, numery akcesyjne: GueR 412, R 1599), uzyskanej z banku genów Federalnego Banku Genów dla Rolniczych i Ogrodniczych Gatunków Roślin z Leibniz, Instytut Genetyki Roślin i Badań Roślin Uprawnych (IPK) Gatersleben, Niemcy. W wyniku suszy zmniejszył się wskaźnik funkcjonowania PS II (fotosystem PS II), przy czym tendencja spadkowa wartości PI (ogólny wskaźnik funkcjonowania PS II) nasilała się wraz z długością trwania warunków stresu. Testowana linia żyta w kontroli nie wykazała znaczącej zmienności maksymalnej wydajności kwantowej PS II (Fv/Fm). Istotne różnice w natężeniu transpiracji, przewodności szparkowej i podszparkowego stężenia CO2 stwierdzono w 18. dniu suszy. Zauważono istotną dodatnią zależność współczynników korelacji pomiędzy PLSN, LSW, LSGN, LSGW i E, gs, ci (PLSN – liczba kłosów produkcyjnych z pędów bocznych, LSW – masa kłosów produkcyjnych z pędów bocznych, LSGN – liczba ziaren z pędów bocznych, LSGW – masa ziaren z pędów bocznych, E – intensywność transpiracji, ci – podszparkowe stężenie CO2, gs – przewodnictwo szparkowe).
 
REFERENCES (45)
1.
Anjum S.A., Xie X-Y., Wang L-Ch., Saleem M.F., Man Ch., Lei W., 2011. Morphological, physiological and biochemical responses of plants to drought stress. Afr. J. Agric. Res., 6(9), 2026-2032.
 
2.
Anjum F., Yaseen M., Rasul E., Wahid A., Anjum S., 2003. Water stress in barley (Hordeum vulgare L.). II. Effect on chemical composition and chlorophyll contents”. Pakistan J Agric Sci., 40, 45-49.
 
3.
Arji I., Arzani K., 2008. Effect of water stress on some biochemical changes in leaf of five olive (Olea europaea L.) cultivars. Acta Horticulturae, 791, 523-526, doi:10.17660/ActaHortic.2008.791.80.
 
4.
Arnon D.J., Allen M.B., Whatley F., 1956. Photosynthesis by isolated chloroplast. IV General concept and comparison of three photochemical reactions. Biochim. Biophys. Acta, 20, 449-461, doi:10.1016/0006-3002(56)90339-0.
 
5.
Bandurska H., 1991. The effect of proline on nitrate reductase activity in water – stressed barley leaves. Acta Physiol. Plant., 1, 3-11.
 
6.
Blum A., 2009. Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field. Crop. Res., 112, 119-123, doi:10.1016/j.fcr.2009.03.009.
 
7.
Bray E., 1997. Plant responses to water deficit. Trends Plant Sci. 2, 48-54, doi:10.1016/S1360-1385 (97)82562-9.
 
8.
Cechin I., 1998. Photosynthesis and chlorophyll fluorescence in two hybrids of sorghum under different nitrogen and water regimes. Photosynthetica., 35, 233-240, doi:10.1023/A:1006910823378.
 
9.
Cetner M.D., Pietkiewicz S., Podlaski S., Wiśniewski G., Chołuj D., Łukasik I., Kalaji, M.H., 2014. Photosynthetic Efficiency of Virginia Mallow (Sida Hermaphrodita (L.) Rusby) under Differentiated Soil Moisture Conditions. Int. J. Sust. Water Environ. Syst. 6, 89-95.
 
10.
Cetner M.D., Dąbrowski P., Samborska I.A., Łukasik I., Swoczyna T., Pietkiewicz S., Bąba W., Kalaji, M.H., 2016. Application of chlorophyll fluorescence measurements in environmental studies (in Polish). Kosmos. Probl. Nauk Biol., 65(2/311), 197-205.
 
11.
Czyczyło-Mysza I., 2013. Identification of quantitative trait loci (QTL) controlling photochemical and photosynthetic activity and yield of wheat plants under drought conditions using a mapping population of CSDH lines. Dissertation, PAS.
 
12.
Czyczyło-Mysza I., Myśków B., 2017. Analysis of the impact of drought on selected morphological, biochemical and physiological traits of rye inbred lines. Acta Physiol. Plant., 39, 87-94, doi:10.1007/s11738-017-2385-x.
 
13.
Desotgiu R., Pollastrini M., Cascio C., Gerosa G., Marzuoli R., Bussotti F., 2012. Chlorophyll a fluorescence analysis along a vertical gradient of the crown in a poplar (Oxford clone) subjected to ozone and water stress. Tree Physiology., 32, 976-986, doi:10.1093/treephys/tps062.
 
14.
Duggan B.L., Domitruk D.R., Fowler DB., 2000. Yield component variation in winter wheat grown under drought stress. Can. J. Pl. Sci., 80, 739-745, doi:10.4141/P00-006.
 
15.
Faraloni C., Cutino I., Petruccelli R., Leva A.R., Lazzeri S., Torzillo G., 2011. Chlorophyll fluorescence technique as a rapid tool for in vitro screening of olive cultivars (Olea europaea L.) tolerant to drought stress. Environ. Exp. Bot., 73, 49-56, doi:10.1016/j.envexpbot.2010.10.011.
 
16.
Hager A., Mayer-Berthenrath T., 1966. Die Isolierung und quanttative Bestimung der Carotenoide und Chlorophyll von Blatern, Algen und isolierten Chloroplasten mit Hilfe Dunnschicht-chromatographischer Methoden. Planta. 69, 198-217, doi:10.1007/BF00384873.
 
17.
Havaux M., 1992. Stress tolerance of photosystem II in vivo, antagonistic effects of water, heat and photoinhibition stresses. Plant Physiol., 100, 424-432, doi:10.1104/pp.100.1.424.
 
18.
Jatoi W.A., Baloch M.J. Kumbhar M.B., Khan N.U., Kerio, M.I., 2011. Effect of water stress on physiological and yield parameters at anthesis stages in elite spring wheat cultivars. Sarhad J. Agric., 27(1), 59-65.
 
19.
Jaleel C.A., Manivannan P, Wahid A, Farooq M., Somasundaram R., Panneerselvam R., 2009. Drought stress in plants: a review on morphological characteristics and pigments composition. Int. J. Agric. Biol., 11, 100-105.
 
20.
Jaroszewska A., Podsiadło C., Kowalewska, R., 2011. Analysis of water use by cherry tree under various water and fertilisation conditions (in Polish). Infrastruktura i Ekologia Terenów Wiejskich, 6, 165-173.
 
21.
Kalaji H.M., Carpentier R., Allakhverdiev S.I., Bosa K., 2012. Fluorescence parameters as early indicators of light stress in barley. J. Photoch. Photobio. B., 112, 1-6, doi:10.1016/j.jphotobiol. 2012.03.009.
 
22.
Kalaji H.M., Oukarroum A., Alexandrov V., Kouzmanova M., Brestic M., Zivcak M., Samborska I.A., Cetner M.D., Allakhverdiev S.I., Goltsev V., 2014. Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements. Plant Physiol. Biochem., 81, 16-25, doi:10.1016/j.plaphy.2014.03.029.
 
23.
Kiani S.P., Maury P., Sarrafi A., Grieu P., 2008. QTL analysis of chlorophyll fluorescence parameters in sunflower (Helianthus annuus L.) under well-watered and water-stressed conditions”. Plant Sci., 175, 565-573, doi:10.1016/j.plantsci.2008.06.002.
 
24.
Klamkowski K., Treder W., Orlikowska T., 2015. Effect of long-term water deficit in the substrate on selected physiological parameters of plants of three raspberry cultivars (in Polish). Inf. Ecol. Rural Areas, 3(1), 603-611.
 
25.
Kocoń A., 2006. Effect of water stress on photosynthesis of selected spring wheat cultivars (in Polish). Zesz. Probl. Postęp. Nauk Rol., 509, 133-139.
 
26.
Lichtenthaler H.K., 1987. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol., 148, 350-380, doi:10.1016/0076-6879(87)48036-1.
 
27.
Mahajan S., Tuteja N., 2005. Cold, salinity and drought stresses: an overview. Arch. Biochem. Biophys., 444, 139-158, doi:10.1016/j.abb.2005.10.018.
 
28.
Massacci A., Nabiev S.M., Pietrosanti L., Nematov S.K., Chernikova T.N., Thor K., Leipner J., 2008. Response of the photosynthetic apparatus of cotton (Gossypium hirsutum) to the onset of drought stress under field conditions studied by gas-exchange analysis and chlorophyll fluorescence imaging. Plant Physiol. Biochem., 46, 189-195, doi:10.1016/j.plaphy.2007.10.006.
 
29.
Mishra K.B., Iannacone R., Petrozza A., Mishra A., Armentano N., La Vecchia G., Trtílek M., Cellini F., Nedbal L., 2012. Engineered drought tolerance in tomato plants is reflected in chlorophyll fluorescence emission. Plant Sci., 182, 79-86, doi:10.1016/j.plantsci.2011.03.022.
 
30.
Morales C.G., Pino M.T., del Pozo A., 2013. Phenological and physiological responses to drought stress and subsequent rehydration cycles in two raspberry cultivars. Sci. Hort., 162, 234-241, doi:10.1016/j.scienta.2013.07.025.
 
31.
Neill S.J., Burnett E.C.,1999. Regulation of gene expression during water deficit stress. Plant Growth Reg., 29, 23-33, doi:10.1023/A:1006251631570.
 
32.
Olszewska M., 2004. Response of white clover grown on two types of soils to water stress (in Polish). Acta Sci. Pol., Agricultura, 3(2), 203-213.
 
33.
Olszewski J., Pszczółkowska A., Kulik T., Fordoński G., Płodzień K., Okorski A., Wasielewska J., 2007. Effect of water deficit on gas exchange indices, productivity and health status of winter wheat cultivars (in Polish). Acta Sci. Pol., Agricultura, 6(4), 33-42.
 
34.
Olszewska M., Grzegorczyk S., 2013. Effect of water stress on selected grass cultivars grown on an organic soil (in Polish). Fragm. Agron., 30(3), 140-147.
 
35.
Popova L.P., Outlaw W.H., Aghoram K., Hite D.R.C., 2000. Abscisic acid – an intraleaf water-stress signal. Physiol. Plant., 108, 376-381.
 
36.
Ranjbarfordoei A., Samson R., Van Damme P., Lemeur R., 2000. Effects of drought stress induced by polyethylene glycol on pigment content and photosynthetic gas exchange of Pistacia khinjuk and P. mutica. Photosynthetica, 38, 443-447, doi:10.1023/A:1010946209484.
 
37.
Rapacz M., 2007. Chlorophyll a fluorescence transient during freezing and recovery in winter wheat. Photosynthetica, 45, 409-418, doi:10.1007/s11099-007-0069-2.
 
38.
Rapacz M., Woźniczka A., 2009. A selection tool for freezing tolerance in common wheat using the fast chlorophyll a fluorescence transient. Plant Breed., 128, 227-234, doi:10.1111/ j.1439-0523.2008.01566.x.
 
39.
Rekika D., Nachit M.M., Araus J.L., Monneveux P., 1998. Effects of water deficit on photosynthetic rate and osmotic adjustment in tetraploid wheats. Photosynthetica, 35, 129-138, doi:10.1023/A:1006890319282.
 
40.
Richards R.A., 2006. Physiological traits used in the breeding of new cultivars for water-scarce environments. Agric. Water Manag., 80, 197-211, doi:10.1016/j.agwat.2005.07.013.
 
41.
Starzycki S., 1976. Diseases Pests and Physiology of Rye. In: Production, Chemistry and Technology (Ed. W. Bushuk). American Association of Cereal Chemists, St. Paul, 27-61.
 
42.
Stoll M., Jones H.G., Infante J.M., 2002. Leaf gas exchange and growth in red raspberries is reduced when part of the root system is dried. Acta Hort., 585, 671-676, doi:10.17660/ActaHortic.2002.585.111.
 
43.
Yordanov I., Velikova V., Tsonev T., 2000. Plant response to drought, acclimation and stress tolerance. Photosynthetica, 38, 171-186, doi:10.1023/A:1007201411474.
 
44.
Yordanov I., Velikova V., Tsonev T., 2003. Plant responses to drought and stress tolerance. Bulg. J. Plant Physiol., 187-206.
 
45.
Zlatev Z., 2009. Drought-induced changes in chlorophyll fluorescence of young wheat plants. Biotechnology, 23, 438-441, doi:10.1080/13102818.2009.10818458.
 
eISSN:2300-6730
ISSN:1234-4125