RESEARCH PAPER
Sstudy on the twin screw extrusion-cooking of plant-meat pet food mixtures
Aldona Sobota 1  
,  
Piotr Zarzycki 1  
,  
Anna Wirkijowska 1  
,  
Zbigniew Rzedzicki 1  
,  
 
 
More details
Hide details
1
Zakład Inżynierii i Technologii Zbóż, Katedra Technologii Surowców Pochodzenia Roślinnego i Gastronomii, Uniwersytet Przyrodniczy w Lublinie, ul. Skromna 8, 20-704 Lublin
CORRESPONDING AUTHOR
Piotr Zarzycki   

Zakład Inżynierii i Technologii Zbóż Katedra Technologii Surowców Pochodzenia Roślinnego i Gastronomii Uniwersytet Przyrodniczy w Lublinie ul. Skromna 8, 20-704 Lublin
Publish date: 2018-11-22
Final revision date: 2018-11-07
Acceptance date: 2018-11-07
 
Acta Agroph. 2018, 25(4), 421–435
KEYWORDS
TOPICS
ABSTRACT
A study was conducted on the possibility of application of “dry” extrusion-cooking technology for the processing of plant-meat mixtures. The effect of the concentration of the meat material (meat-bone pulp), leguminous material (faba bean), wheat grain meal and extrusion temperature on the process run, physicochemical properties and on the microstructure of the extrudates was investigated. It was demonstrated that extrusion-cooking with a twin-screw extruder permits the processing of blends with up to 30% meat-bone pulp content. Increase in the content of the meat material caused a decrease of specific density and water solubility index (WSI) of the extrudates. At the same time, a significant increase in the content of proteins, fat, and ash was observed. Extrusion temperature increase from 130 to 250°C caused an increase in the degree of expansion ratio and impact strength of the extrudates and a decrease in specific density of the products. At the same time, the microstructure of the products was changed from cohesive and compacted to more expanded and porous.
METADATA IN OTHER LANGUAGES:
Polish
Badania procesu ekstruzji dwuślimakowej mieszanek roślinno-mięsnych przeznaczonych dla zwierząt domowych
ekstruzja, bobik, miazga mięsno-kostna, karma, pszenica
Przeprowadzono badania nad możliwością wykorzystania technologii ekstruzji „suchej” do przetwarzania mieszanek roślinno-mięsnych. Określono wpływ udziału komponentów mięsnych (miazga mięsno-kostna), roślin strączkowych (nasiona bobiku), rozdrobnionego ziarna pszenicy oraz temperatury wytłaczania na przebieg procesu, właściwości fizyko-chemiczne oraz mikrostrukturę ekstrudatów. Wykazano, że zastosowanie ekstrudera dwuślimakowego umożliwia przetwarzanie mieszanek z udziałem miazgi mięsno-kostnej dochodzącej do 30%. Zwiększenie udziału komponentu mięsnego powoduje obniżenie gęstości właściwej i rozpuszczalności suchej masy (WSI) ekstrudatów. Odnotowano także, wzrost zawartości białka, tłuszczu i popiołu w ekstrudatach. Podniesienie temperatury wytłaczania z 130 do 250°C wpłynęło na wzrost stopnia ekspandowania i udarności oraz obniżenie gęstości właściwej ekstrudatów. Jednocześnie mikrostruktura ekstrudatów z formy zwięzłej i zbitej przeszła w formę bardziej wyekspandowaną i porowatą.
 
REFERENCES (27)
1.
AACC, 2000. Approved Methods of the American Association of Cereal Chemists. AACC Press, St. Paul.
 
2.
AOAC, 1990. Official Methods of Analysis of the Association of Analytical Chemists, AOAC Press, Arlington-Virginia.
 
3.
Allen K.E., Carpenter C.E., Walsh M.K., 2007. Influence of protein level and starch type on an extrusion-expanded whey product. Int. J. Food Sci. Technol., 42, 953-960, doi:10.1111/ j.1365-2621.2006.01316.x.
 
4.
Alonso R., Rubio L.A., Muzquiz M., Marzo F., 2001. The effect of extrusion cooking on mineral bioavailability in pea and kidney bean seed meals. Anim. Feed Sci. Technol., 94(1-2), 1-13, doi:10.1016/S0377-8401(01)00302-9.
 
5.
Ayadi F.Y., Rosentrater K.A., Muthukumarappan K., Brown M.L., 2012. Twin-screw extrusion processing of distillers dried grains with soluble (DDGS)-based yellow perch (Perca flavescens) feeds. Food Bioprocess. Technol., 5, 1963-1978, doi:10.1007/s11947-011-0535-5.
 
6.
Balandran-Quintana R.R., Barbosa-Canovas G.V., Zazueta-Morales J.J., Anzaldua-Morales A., Quintero-Ramos A., 1998. Functional and nutritional properties of extruded whole pinto bean meal (Phaseolus Vulgaris L.). J. Food Sci., 1, 113-116, doi:10.1111/j.1365-2621.1998.tb15688.x.
 
7.
Brennan M.A., Derbyshire E., Tiwari B.K., Brennan C.S., 2012. Enrichment of Extruded Snack Products with Coproducts from Chestnut Mushroom (Agrocybe aegerita) Production: Interactions between Dietary Fiber, Physicochemical Characteristics, and Glycemic Load. J. Agric. Food Chem., 60, 4396-4401, doi:10.1021/jf3008635.
 
8.
Camire M., Zhao J., Violette D.A., 1993. In vitro binding of bile acids by extruded potato peels. J. Agric. Food Chem., 41, 2391-2394, doi:10.1021/jf00036a033.
 
9.
Castells M., Marin S., Sanchis V., Ramos A.J., 2005. Fate of mycotoxins in cereals during extrusion cooking: a review. Food Addit. Contam., 22, 150-157, doi:10.1080/02652030500037969.
 
10.
Colona P., Tayeb J., Mercier C., 1989. Extrusion cooking of starch and starchy products. In: Extrusion Cooking (Eds C. Mercier, P. Linko, J.M. Harper), AACC Inc.; Saint Paul, 247-320.
 
11.
Ding Q-B., Ainsworth P., Tucker G., Marson H., 2005. The effect of extrusion conditions on the physicochemical properties and sensory characteristics of rice-based expanded snacks. J. Food Eng., 66(3), 283-289, doi:10.1016/j.jfoodeng.2004.03.019.
 
12.
Ding Q-B., Ainsworth P., Plunkett A., Tucker G., Marson H., 2006. The effect of extrusion conditions on the functional and physical properties of wheat-based expanded snacks. J. Food Eng., 73(2), 142-148, doi:10.1016/j.jfoodeng.2005.01.013.
 
13.
Faubion J.M., Hoseney R.C., 1982. High-temperature short-time extrusion cooking of wheat starch and flour. II. Effect of protein and lipid on extrudate properties. Cereal Chem., 59, 533-537.
 
14.
Guz L., Puk K., Walczak N., Oniszczuk T., Oniszczuk A., 2014. Effect of dietary supplementation with Echinacea purpurea on vaccine efficacy against infection with Flavobacterium columnare in zebrafish (Danio rerio). Pol. J. Vet. Sci., 17(4), 583-586, doi:10.2478/pjvs-2014-0087.
 
15.
Guz L., Sopińska A., Oniszczuk T., 2011. Effect of Echinacea purpurea on growth and survival of guppy (Poecilia reticulata) challenged with Aeromonas bestiarum. Aquac. Nutr., 17(6), 695-700, doi:10.1111/j.1365-2095.2011.00873.x.
 
16.
Likimani T.A., Sofos J.N., 1990. Bacterial spore injury during extrusion cooking of corn/soybean mixtures. Int. J. Food Microbiol., 11(3-4), 243-249, doi:10.1016/0168-1605(90)90017-Y.
 
17.
Okelo P.O., Wagner D.D., Carr L.E., Wheaton F.W., Douglass L.W., Joseph S.W., 2006. Optimization of extrusion conditions for elimination of mesophilic bacteria during thermal processing of animal feed mash. Anim. Feed Sci. Tech., 129, 116-137, doi:10.1016/j.anifeedsci.2005.12.011.
 
18.
Oniszczuk T., Oniszczuk A., Gondek E., Guz L., Puk K., Kocira A., Kusz A., Kasprzak K., Wójtowicz A., 2017. Active polyphenolic compounds, nutrient contents and antioxidant capacity of extruded fish feed containing purple coneflower (Echinacea purpurea (L.) Moench.). Saudi J. Biol. Sci., doi:10.1016/j.sjbs.2016.11.013.
 
19.
Rzedzicki Z., Szpryngiel B., Sobota A., 2000. Estimation of some chosen physical properties of extrudates obtained from corn semolina and oat bran mixtures. Int. Agrophys., 14, 233-239.
 
20.
Rzedzicki Z., Sobota A., Zarzycki P., 2004. Study on the process of single-screw extrusion-cooking of mixtures with a content of pea hulls. Int. Agrophys., 18(1), 73-82.
 
21.
Samuelsen T.A., Mjøs S.A., Oterhals Å., 2013. Impact of variability in fishmeal physicochemical properties on the extrusion process, starch gelatinization and pellet durability and hardness. Anim. Feed Sci. Tech., 179, 77-84, doi:10.1016/j.anifeedsci.2012.10.009.
 
22.
Seker M., 2005. Selected properties of native or modified maize starch/soy protein mixtures extruded at varying screw speed. J. Sci. Food Agr., 85, 1161-1165, doi:10.1002/jsfa.2086.
 
23.
Singh B., Sekhon K.S., Singh N., 2007. Effects of moisture, temperature and level of pea grits on extrusion behaviour and product characteristics of rice. Food Chem., 100, 198-202, doi:10.1016/j.foodchem.2005.09.042.
 
24.
Sobota A., Rzedzicki Z., 2009. Effect of the extrusion process of corn semolina and pea hulls blends on chemical composition and selected physical properties of the extrudates. Int. Agrophys., 23(1), 67-79.
 
25.
Van De Velde C., Bounie D., Cuq J.L., Cheftel J.C., 1984. Destruction of microorganism and toxins by extrusion-cooking. In: Thermal Processing and Quality of Foods (Eds P. Zeuthen, J.C. Cheftel, C. Eriksson, M. Jul, H. Leniger, P. Linko, G. Varela, G. Vos) Elsevier Applied Science Publisher, London, 155-161.
 
26.
Van Hoan N., Mouquet-Rivier C., Treche S., 2010. Effects of starch, lipid and moisture contents on extrusion behaviour and extrudate characteristics of rice-based blends prepared with a very-low-cost extruder. J. Food Process. Eng., 33(3), 519-539, doi:10.1111/j.1745-4530.2008.00288.x.
 
27.
Wójtowicz A., Mitrus M., Oniszczuk T., Mościcki L., Kręcisz M., Oniszczuk A., 2015. Selected physical properties, texture and sensory characteristics of extruded breakfast cereals based on wholegrain wheat flour. Agric. Agric. Sci. Procedia, 7, 301-308, doi:10.1016/j.aaspro.2015.12.051.
 
eISSN:2300-6730
ISSN:1234-4125