REVIEW PAPER
Methods of determination of water infiltration from the atmosphere in non-rainfall periods
 
More details
Hide details
1
Instytut Kształtowania i Ochrony Środowiska, Uniwersytet Przyrodniczy we Wrocławiu pl. Grunwaldzki 24, 50-363 Wrocław
Publish date: 2018-06-25
 
Acta Agroph. 2018, 25(2), 145–162
KEYWORDS
TOPICS
ABSTRACT
The paper presents a review of quantitative methods of determination of the intensity of water infiltration to the surface horizon of soil in non-rainfall periods. The review includes the following: lysimetric methods, methods using dew collectors and sediment gauges, method using aluminium barriers and TDR gauges, and models using empirical and phenomenological mathematical formulae. It is demonstrated that the method using sediment gauges and the method using aluminium barriers have the most advantages. In both of these methods the TDR technique plays a fundamental role. Estimation of water infiltration in non-rainfall periods provides valuable information in the process of dosage determination, e.g. in injection irrigation.
METADATA IN OTHER LANGUAGES:
Polish
Metody wyznaczania infiltracji wody z atmosfery w okresach bezopadowych
szacowanie, infiltracja wody z atmosfery w okresach bezopadowych, technika TDR, metody lizymetryczne, kolektory rosy, czujniki osadów
W pracy dokonano przeglądu ilościowych metod wyznaczania natężenia infiltracji wody do wierzchniej warstwy gleby w okresach bezopadowych. Wykorzystano: metody lizymetryczne, kolektory rosy i czujniki osadów, aluminiowe przegrody i czujniki TDR oraz modele wykorzystujące empiryczne i fenomenologiczne formuły matematyczne. Wykazano, że najwięcej zalet ma metoda wykorzystująca czujniki osadów oraz metoda z zastosowaniem aluminiowych przegród. W obu technika TDR odgrywa zasadniczą rolę. Szacowanie infiltracji wody w okresach bezopadowych stanowi cenną informację w procesie nawadniania iniekcyjnego.
 
REFERENCES (66)
1.
Agam N., Berliner P.R., 2006. Dew formation and water vapor adsorption in semi-arid environments – A review. J. Arid. Environ., 65(4), 572-590.
 
2.
Agam N., Berliner P.R., 2004. Diurnal water content changes in the bare soil of a coastal desert. J. Hydrometeorol., 5(5), 922-933.
 
3.
Alishaev M.G., 2013. On condensation and precipitation of atmospheric moisture in the surface layer. Russ. Meteorol. Hydrol., 38(8), 522-530.
 
4.
Alnaser W.E., Barakat A., 2000. Use of condensed water vapour from the atmosphere for irrigation in Bahrain. Appl. Energy, 65(1-4), 3-18.
 
5.
Atzema A.J., Jacobs A.F.G., Wartena L., 1990. Moisture distribution within a maize crop due to dew. Neth. J. Agr. Sci., 38(2), 117-129.
 
6.
Beysens D., 1995. The formation of dew. Atmos. Res., 39(1-3), 215-237.
 
7.
Beysens D., Milimouk I., Nikolayev V., Muselli M., Marcillat J., 2003. Using radiative cooling to condense atmospheric vapor: a study to improve water yield. J. Hydrol., 276(1-4), 1-11.
 
8.
Błaś M., Sobik M., Quiel F., Netzel P., 2002. Temporal and spatial variations of fog in the Western Sudety Mts., Poland., Atmos. Res., 64, 19-28.
 
9.
Brown R., Mills A., Jack C., 2008. Non-rainfall moisture inputs in the Knersvlakte: Methodology and preliminary findings. Water SA, 34(2), 275-278.
 
10.
Duvdevani S., 1947. An optical method of dew estimation. Q. J. R. Meteorolog. Soc., 73(317-318), 282-296.
 
11.
Ermich K., 1958. An attempt at the determination of the contribution of so-called horizontal precipitations in the water cycle in nature (in Polish). Wiadomości Botaniczne, 2(4), 219-236.
 
12.
Fischer T., Veste M., Bens O., Huttl R.F., 2012. Dew formation on the surface of biological soil crusts in central European sand ecosystems. Biogeosciences, 9(11), 4621-4628.
 
13.
Heusinkveld B.G., Berkowicz S.M., Jacobs A.F.G., Holtslag A.A.M., Hillen W.C.A.M., 2006. An automated microlysimeter to study dew formation and evaporation in arid and semiarid regions. J. Hydrometeorol., 7(4), 825-832.
 
14.
Hutorowicz H., 1963. Dew measurements at Olsztyn. Assoc. Int. Hydrol. Scient., 65, 352-359.
 
15.
Jacobs A.F.G., Heusinkveld B.G., Berkowicz S.M., 1999. Dew deposition and drying in a desert system: a simple simulation model. J. Arid. Environ., 42(3), 211- 222.
 
16.
Jacobs A.F.G., Heusinkveld B.G., Berkowicz S.M., 2002. A simple model for potential dewfall in an arid region. Atmos. Res., 64(1-4), 285-295.
 
17.
Jacobs A.F.G., Heusinkveld B.G., Kruit R.J.W., Berkowicz S.M., 2006. Contribution of dew to the water budget of a grassland area in the Netherlands. Water Resour. Res., 42(3).
 
18.
Jacobs A.F.G., Van Pul A., El-Kilani R.M.M., 1994. Dew formation and the drying process within a maize canopy. Bound.-Lay. Meteorol., 69(4), 367-378.
 
19.
Janik G., Skierucha W., Błaś M., Sobik M., Albert M., Dubicki M., Zawada A., 2014. TDR technique for estimating the intensity of effective non rainfall. Int. Agrophys., 28(1), 23-37.
 
20.
Kalbarczyk E., 2005. Multi-year variation of occurrence of atmospheric precipitation in Pomerania (in Polish). Scientific Review Engineering and Environmental Sciences, 1(31), 224-233.
 
21.
Kaseke K.F., Mills A.J., Brown R., Esler K.J., Henschel J.R., Seely M.K., 2012. A Method for Direct Assessment of the “Non Rainfall” Atmospheric Water Cycle: Input and Evaporation From the Soil. Pure Appl. Geophys., 169(5-6), 847-857.
 
22.
Kaseke K.F., Wang L., Seely M.K., 2017. Nonrainfall water origins and formation mechanisms. Sci. Adv., 3(3), e1603131.
 
23.
Katata G., Nagai H., Ueda H., Agam N. and Berliner P.R., 2007. Development of a land surface model including evaporation and adsorption processes in the soil for the land-air exchange in arid regions. J. Hydrometeorol., 8(6), 1307-1324.
 
24.
Kidron G.J., 1998. A simple weighing method for dew and fog measurements. Weather, 53(12), 428-433.
 
25.
Kidron G.J., 1999. Altitude dependent dew and fog in the Negev Desert, Israel. Agr. Forest Meteorol., 96(1-3), 1-8.
 
26.
Kidron G.J., 2000. Analysis of dew precipitation in three habitats within a small arid drainage basin, Negev Highlands, Israel. Atmos. Res., 55(3-4), 257-270.
 
27.
Kidron G.J., 2005. Angle and aspect dependent dew and fog precipitation in the Negev desert. J. Hydrol., 301(1-4), 66-74.
 
28.
Kidron G.J., 2010. The effect of substrate properties, size, position, sheltering and shading on dew: An experimental approach in the Negev Desert. Atmos. Res., 98(2-4), 378-386.
 
29.
Kidron G.J., Kronenfeld R., 2017. Assessing the effect of micro-lysimeters on NRWI: Do micro-lysimeters adequately represent the water input of natural soil? J. Hydrol., 548, 382-390.
 
30.
Kidron G.J., Starinsky A., Yaalon D.H., 2014. Cyanobacteria are confined to dewless habitats within a dew desert: Implications for past and future climate change for lithic microorganisms. J. Hydrol., 519, 3606-3614.
 
31.
Kidron G.J., Temina M., Starinsky A., 2011. An investigation of the role of water (rain and dew) in controlling the growth form of lichens on cobbles in the Negev Desert. Geomicrobiol. J., 28(4), 335-346.
 
32.
Kosmas C., Danalatos N.G., Poesen J., van Wesemael B., 1998. The effect of water vapour adsorption on soil moisture content under Mediterranean climatic conditions. Agr. Water Manage., 36(2), 157-168.
 
33.
Kosmas C., Marathianou M., Gerontidis St., Detsi V., Tsara M., Poesen J., 2001. Parameters affecting water vapor adsorption by the soil under semi-arid climatic conditions. Agr. Water Manage., 48(1), 61-78.
 
34.
Liu L., Li S., Duan Z., Wang T., Zhang Z., Li X., 2006. Effects of microbiotic crusts on dew deposition in the restored vegetation area at Shapotou, northwest China. J. Hydrol., 328(1-2), 331- 337.
 
35.
Li X., 2002. Effects of gravel and sand mulches on dew deposition in the semiarid region of China. J. Hydrol., 260(1-4), 151-160.
 
36.
Luo W., Goudriaan J., 2000. Dew formation on rice under varying durations of nocturnal radiative loss. Agr. Forest Meteorol., 104(4), 303-313.
 
37.
Maestre-Valero J.F., Martinez-Alvarez V., Baille A., Martin-Gorriz B., Gallego-Elvira B., 2011. Comparative analysis of two polyethylene foil materials for dew harvesting in a semi-arid climate. J. Hydrol., 410(1-2), 84-91.
 
38.
Malek E., 2003. Microclimate of a desert playa: Evaluation of annual radiation, energy, and water budgets components. Int. J. Climatol., 23(3), 333-345.
 
39.
Malek E., McCurdyb G., Giles B., 1999. Dew contribution to the annual water balances in semi-arid desert valleys. J. Arid. Environ., 42(2), 71-80.
 
40.
Meissner R., Rupp H., Weller U., Vogel H.-J. and Seyfarth M., 2010. Lysimeter research in Europe – technological developments and research strategies. 19th World Congress of Soil Science. Soil Solutions for Changing World, 1-6 August, Brisbane, Australia.
 
41.
Meissner R., Seeger J., Rupp H., Seyfarth M., Borg H., 2007. Measurement of dew, fog, and rime with a high-precision gravitation lysimeter. J. Plant Nutr. Soil Sci., 170(3), 335-344.
 
42.
Moratiel R., Martinez-Cob A., Tarquis A. M., 2016. Soil water balance correction due to light rainfall, dew and fog in Ebro river basin (Spain). Agr. Water Manage., 170, 61-67.
 
43.
Moro M. J., Were A., Morillas L., Villagarcía L., Cantón-Castilla M. Y., Lázaro-Suau, R., Serrano-Ortiz P., Kowalski A. S., Domingo-Poveda F., 2009. Dew contribution to the water balance in a semiarid coastal steppe ecosystem (Cabo de Gata, SE Spain). Ediciones de la Universidad de Murcia, Spain, ISBN: 978-84-8371-888-9.
 
44.
Nakonieczna A., Kafarski M., Wilczek A., Szypłowska A., Janik G., Albert M., Skierucha W., 2015. Detection of atmospheric water deposits in porous media using the TDR technique. Sensors, 15(4), 8464-8480.
 
45.
Ninari N., Berliner P.R., 2002. The role of dew in the water and heat balance of bare loess soil in the Negev Desert: quantifying the actual dew deposition on the soil surface. Atmos. Res., 64(1), 323-334.
 
46.
Pan Y., Wang X., Zhang Y., 2010. Dew formation characteristics in a revegetation-stabilized desert ecosystem in Shapotou area, Northern China. J. Hydrol., 387(3-4), 265-272.
 
47.
Parczewski W., 1977. Materials for lectures on meteorology and climatology (in Polish). Wydaw. Politechniki Warszawskiej, 246 s.
 
48.
Polkowska Ż., Błaś M., Sobik M., Klimaszewska K., Małek S., Namieśnik J. 2008. Various forms of a tmospheric precipitation and deposits as a measure of environmental pollution in different geographic regions of Poland - part II - Dew (in Polish). Ecol. Chem. Eng., 15(4), 529-560.
 
49.
Ramirez D.A., Bellot J., Domingo F., Blasco A., 2007. Can water responses in Stipa tenacissima L. during the summer season be promoted by non-rainfall water gains in soil? Plant Soil, 291(1-2), 67-79.
 
50.
Reinhard T., Reinhard A., 2005. The choice of time step in the calculation of soil moisture by means of a mathematical model simulating drip irrigation (in Polish). Zesz. Nauk. AR Wroc., 520, 95-105.
 
51.
Richards K., 2002. Hardware scale modelling of summertime patterns of urban dew and surface moisture in Vancouver, BC, Canada. Atmos. Res., 64(1-4), 313-321.
 
52.
Richards K., 2005. Urban and rural dewfall, surface moisture, and associated canopy-level air temperature and humidity measurements for Vancouver, Canada. Bound.-Lay. Meteorol., 114(1), 143-163.
 
53.
Rosenberg J., 1969. The application of ternary semigroups to the study of n-valued Sheffer functions. Notre Dame Journal of Formal Logic, 10, 90-94.
 
54.
Scanlon B.R., Milly P.C.D., 1994. Water and heat fluxes in desert soils. 2. Numerical simulations. Water Resour. Res., 30(3), 721-733.
 
55.
Sharan G., 2011. Harvesting dew with radiation cooled condensers to supplement drinking water supply in semi-arid coastal northwest India. International Journal for Service Learning in Engineering, 6(1), 130-150.
 
56.
Skierucha W., 2009. Temperature dependence of time domain reflectometry - measured soil dielectric permittivity. J. Plant Nutr. Soil Sc., 172(2), 186-193.
 
57.
Skierucha W., Wilczek A., Alokhina O., 2008. Calibration of a TDR probe for low soil water content measurements. Sensor. Actuat. A-Phys., 147, 544-552.
 
58.
Subramaniam A.R., Kesava-Rao A.V.R., 1983. Dew fall in sand dune areas of India. Int. J. Biometeorol., 27(3), 271-280.
 
59.
Ucles O., Villagarcia L., Canton Y., Domingo F., 2016. Partitioning of non rainfall water input regulated by soil cover type. Catena, 139, 265-270.
 
60.
Varado N., Braud I., Ross P.J., Haverkamp R. 2006. Assessment of an efficient numerical solution of the 1D Richards’ equation on bare soil. J. Hydrol., 323(1-4), 244-257.
 
61.
Verhoef A., Diaz-Espejo A., Knight J.R., Villagarcía L., Fernández J.E., 2006. Adsorption of water vapor by bare soil in an olive grove in southern Spain. J. Hydrometeorol., 7(5), 1011-1027.
 
62.
Zangvil A., 1996. Six years of dew observations in the Negev Desert, Israel. J. Arid. Environ., 32(4), 361-371.
 
63.
Zangvil A., Druian P., 1980. Measurements of dew at a desert site in southern Israel. Geographical Research Forum, 2, 26-34.
 
64.
Zhang Q., Wang S., Yang F.-L., Yue P., Yao T., Wang W.-Y., 2015. Characteristics of dew formation and distribution, and its contribution to the surface water budget in a semi-arid region in China. Bound.-Lay. Meteorol., 154(2), 317-331.
 
65.
Zhuang Y., Zhao W., 2014. Dew variability in three habitats of a sand dune transect in a desert oasis ecotone, Northwestern China. Hydrol. Processes, 28(3), 1399-1408.
 
66.
Zhu Q.L., Jiang Z.B., 2016. Using stable isotopes to determine dew formation from atmospheric water vapor in soils in semiarid regions. Arab. J. Geosci., 9(1).
 
eISSN:2300-6730
ISSN:1234-4125