Impact of seed light stimulation on the mechanical strength and photosynthetic pigments content in the scorzonera leaves
More details
Hide details
Department of Biophysics, University of Life Sciences in Lublin, Poland
Unit of Plant Nutrition, Institute of Horticultural Production, University of Life Sciences in Lublin, Poland,, Poland
Marcela Krawiec   

Unit of Plant Nutrition, Institute of Horticultural Production, University of Life Sciences in Lublin, Poland,, Głęboka 28, 20-612, Lublin, Poland
Publish date: 2019-05-16
Final revision date: 2019-05-02
Acceptance date: 2019-05-06
Acta Agroph. 2019, 26(1), 67–78
The leaves of scorzonera are vulnerable to mechanical damage due to heavy rainfall or wind. The aim of the study was to determine the impact of pre-sowing exposure of scorzonera seeds to laser light on the mechanical strength of the leaves and the content of photosynthetic pigments. The research material consisted of scorzonera leaves obtained from seeds treated with He-Ne laser light at the wavelength of 632.8 nm, surface power density of 5 mW cm–2, and exposure time of 1, 5, 10, and 30 minutes. Young’s modulus measurements showed that the leaves of the plants grown from seeds subjected to laser light stimulation were characterized by better mechanical strength compared to the leaves of the control. The highest values ​​of the Young’s modulus were recorded for scorzonera plants grown from seeds subjected to laser light exposure for 10 minutes. Exposure to light for a period of 1, 5 and 30 minutes significantly affected the content of chlorophylls and carotenoids in the leaves relative to the control. The largest increase in the content of photosynthetic pigments was recorded for 1 minute. The improvement in the mechanical strength of scorzonera leaves may reduce their vulnerability to mechanical damage during vegetation.
Alvarez-Parrilla E., De La Rosa L.A., Amarowicz R., Shahidi F., 2010. Antioxidant Activity of Fresh and Processed Jalapeño and Serrano Peppers. J. Agric. Food Chem., 59, 163-173,
Angeles G., Lascurain M., Davalos-Sotelo R., Zarate-Morales R.P., Ortega-Escalona F., 2013. Anatomical and physical changes in leaves during the production of tamales. Am. J. Bot., 100(8), 1509-1521,
Anten N.P.R., Alcalá-Herrera R., Scieving F., Onoda Y., 2010. Wind and mechanical stimuli differentially affect leaf traits in Plantago major. New Phytol., 188, 554-564, 10.1111/j.1469-8137.2010.03379.x.
Arévalo C.A., Castillo B., Londoño M.T., 2013. Mechanical properties of rosemary (Rosmarinus afficinalis L.). Agron. Colomb., 31(2), 201-207.
Asghar T., Jamil Y., Iqbal M., ul-Haq Z., Abbas M., 2016. Laser light and magnetic field stimulation effect on biochemical, enzymes activities and chlorophyll contents in soybean seeds and seedlings during early growth stages. J. Photochem. Photobiol. B., 165, 283-290,
Boon C.S., Mcclements D.J., Weiss J., Decker E.A., 2010. Factors influencing the chemical stability of carotenoids in foods. Crit. Rev. Food Sci. Nut., 50(6), 515-532,. 10.1080/10408390802565889.
Chwil M., Krawiec M., Krawiec P., Chwil S., 2015. Micromorphology of the epidermis and anatomical structure of the leaves of Scorzonera hispanica L. Acta Soc. Bot. Pol., 84 (3), 357-367,
Ćwintal M., Dziwulska-Hunek A., Wilczek M., 2010. Laser stimulation effect of seeds on quality of alfalfa. Int. Agrophys., 24(1), 15-19.
Dolota A., Dąbrowska B., 2004. The nutritive value of the leaves of several scorzonera (Scorzonera hispanica L.) cultivars. Folia Universitatis Agriculturae Stetinensis. Agricultura, 239(95), 63-68.
Dziwulska- Hunek A., Krawiec M., Sujak A., 2016. Laser light stimulation on Scorzonera hispanica L. seeds germination, field emergence and photosynthetic pigments content. J. Hort. Res., 24(1), 57-62,
Gładyszewska B., Baranowski P., Mazurek W., Ciupak A., Woźniak J., 2011. Radiation temperature of tomatoes and mechanical properties of their skin. Int. Agrophys., 25, 131-139.
Gładyszewska B. 2007. A Method of Investigation of Chosen Mechanical Properties of Thin-Layered Biological Materials (in Polish). Agricultural University Press, Lublin, Poland.
Jiménez-Aguilar D.M., Grusak M.A., 2017. Minerals, vitamin C, phenolics, flavonoids and antioxidant activity of Amaranthus leafy vegetables. J. Food. Compost. Anal., 58, 33-39, 10.1016/j.jfca.2017.01.005.
Khanama U.K.S., Oba S., Yanase E., Murakami Y., 2012. Phenolic acids, flavonoids and total antioxidant capacity of selected leafy vegetables. J. Funct. Foods, 4(4), 979-987, 10.1016/j.jff.2012.07.006.
Kohyama K., Takada A., Sakurai N., Hayakawa F., Yoshiaki H., 2008. Tensile test of cabbage leaves for quality evaluation of shredded cabbage. Food Sci. Technol. Res., 14(4), 337-344,
Krawiec M., Dziwulska-Hunek A., Sujak A., Palonka S., 2015. Laser irradiation effects on scorzonera (Scorzonera hispanica L.) seed germination and seedling emergence. Acta Sci. Pol. Hort. Cultus., 14(2), 145-158.
Lichtenthaler H.K., Buschmann C., 2001. Chlorophylls and Carotenoids: Measurement and Characterization by UV-Vis Spectroscopy. In: Current Protocols in Food Analytical Chemistry. Supplement 1, Wiley & Sons. Inc., USA:F4.3.1-F4.3.8,
Liu R.H., 2013. Health-promoting components of fruits and vegetables in the diet. Adv. Nutr., 4, 484S-493S,
Mohsenin N.N., 1986. Physical properties of plant and animal materials. I. Structure, physical characteristic and mechanical properties. New York, London, Paris: Gordon and Breach Science Publishers.
Muthusamy A., Kudwa P.P., Prabhu V., Mahato K.K., Babu V.S., Rao. M.R., Gopinath P.M., Satyamoorthy K., 2012. Influence of Helium-Neon Laser irradiation on seed germination in vitro and physic-biochemical characters in seedlings of brinjal (Solanum melongena L.) var. Mattu Gulla. Photochem. Photobiol., 88(5), 1227-1235,
Newman J.M., Hilton H.W., Clifford S.C., Smith A.C., 2005. The mechanical properties of lettuce: A comparison of some agronomic and postharvest effects. Journal of Materials Science, 40, 1101-1104,
Onoda Y., Schieving F., Anten N.P.R., 2008. Effects of light and nutrient availability on leaf mechanical properties of Plantago major: A conceptual approach. Ann. Bot., 101, 727-736,
Onoda Y., Westoby M., Adler P.B., Choong A.M.F., Clissold F.J., Cornelissen J.H.C., Diaz S., Dominy N.J., Elgart A., Enrico L., Fine P.V.A., Howard J.J., Jalili A., Kitajima K., Kurokawa H., McArthur C., Lucas P.W., Markesteijn L., Perez- Harguindeguy N., Poorter L., Richards L., Santiago L.S., Sosinski jr E.E., Van Bael S.A., Warton D.I., Wright I.J., Wright S.J., and Yamashita N., 2011. Global patterns of leaf mechanical properties. Ecol. Lett., 14, 301-312,
Perveen R., Jamil Y., Ali Q., Ashraf M., Ali Q., Iqbal M., Ahmad M.R., 2011. He-Ne laser-induced improvement in biochemical, physiological, growth and yield characteristics in sunflower (Helianthus annus L.). Photochem. Photobiol., 8, 1453-1463,
Pinzón A.M., Castillo B., Londoño M.T., 2013. Characterization of the mechanical properties of chives (Allium schoenoprasum L.). Agron. Colomb., 31(1), 83-88.
Podleśna A., Gładyszewska B. Podleśny J., Zgrajka W., 2015. Changes in the germination process and growth of pea in effect of laser seed irradiation. Int. Agrophys., 29(4), 485-492,
Read J., Sanson G.D., 2003. Characterizing sclerophyll: the mechanical properties of a diverse range of leaf types. New Phytol., 160, 81-99,
Read J., Stokes A., 2006. Plant biomechanics in an ecological context. Am. J. Bot., 93(10), 1546-1565,
Sacała E., Demczuk A., Grzyś E., Prośba-Białczyk U., Szajsner H., 2012. Impact of pre-sowing laser irradiation of seeds on sugar beet properties. Int. Agrophys., 26(3), 295-300,
Sangeetha, R. K., Baskaran V., 2010. Carotenoid composition and retinol equivalent in plants of nutritional and medicinal importance. Efficacy of b-carotene from Chenopodium album in retinol-deficient rats. Food Chem., 119, 1584-1590,
Swathy S.P., Kiran K.R., Rao M.S., Mahato K.K., Rao M.R., Satyamoorthy K., Muthusamy A., 2016. Responses of He-Ne laser irradiation on agronomical characters and chlorogenic acid content of brinjal (Solanum melongena L.) var. Mattu Gulla. J. Photochem. Photobiol. B, 164, 182-190
Tang X., Mo C. Y., Chan D. E., Peng Y., Qin J., Yang C., Kim M. S., Chao K., 2011. Physical and mechanical properties of spinach for whole-surface online imaging inspection. Proc. SPIE 8027, Sensing for Agriculture and Food Quality and Safety III, 802711,
van Jaarsveld P., Faber M., van Heerden I., Wenhold F., van Rensburg W. J., van Averbeke W., 2014. Nutrient content of eight African leafy vegetables and their potential contribution to dietary reference intakes. J. Food. Compost. Anal., 33, 77-84,
Watanabe T., Ando Y., Orikasa T., Shiina T., Kohyama K., 2017. Effect of short time on the mechanical fracture and electrical impedance properties of spinach (Spinacia oleracea L.). J. Food Eng., 194, 9-14,
Wieczorek J., Wieczorek Z., 2016. Above ground parts of popular vegetables as a source of carotenoids and chlorophyll in food (in Polish). Bromat. Chem. Toksykol., XLIX, 422-426.
Žnidarčič D., Ban D., Šircelij H., 2011. Carotenoid and chlorophyll composition of commonly consumed vegetables in Mediterranean countries. Food Chem., 129(3), 1164-1168,