RESEARCH PAPER
Possibilities of reducing the phytotoxic effect of nickel
Beata Kuziemska 1  
,  
Dorota Kalembasa 1  
,  
 
 
More details
Hide details
1
Zakład Gleboznawstwa i Chemii Rolniczej, UPH Siedlce, 08-110 Siedlce, ul.Prusa 14, 08-110 Siedlce, Polska
CORRESPONDING AUTHOR
Beata Kuziemska   

Zakład Gleboznawstwa i Chemii Rolniczej, UPH Siedlce, 08-110 Siedlce, ul.Prusa 14, 08-110 Siedlce, Polska
Publish date: 2018-10-09
Final revision date: 2018-09-24
Acceptance date: 2018-09-24
 
Acta Agroph. 2018, 25(3), 359–368
KEYWORDS
TOPICS
ABSTRACT
A pot experiment was conducted in the years 2009-2010. Its aim was to determine the limit of toxicity of nickel to orchard grass (Dactylis glomerata L.) and methods of its reduction by liming and by the addition of straw or brown coal to soil. The addition of nickel to soil, regardless of its dose, increased its content in the test plant and in soil, especially in fraction F1. The content of nickel in biomass of orchard grass exceeded the limit values in pots where it was added to soil. Soil liming reduced the content of nickel in orchard grass and in fractions isolated from soil – soluble fraction F1, reducible fraction F2 and oxidisable fraction F3. The addition of rye straw and brown coal to the soil reduced the content of nickel in the test grass and the content in bioavailable fraction F1. Liming and the addition of rye straw and brown coal to soil reduced the phytoavailability of nickel.
METADATA IN OTHER LANGUAGES:
Polish
Możliwości zmniejszenia fitotoksycznego działania niklu
nikiel, wapnowanie, słoma, węgiel brunatny, frakcje Ni w glebie
W latach 2009-2010 przeprowadzono doświadczenie wazonowe, którego celem było ustalenie granicy toksyczności niklu dla kupkówki pospolitej (Dactylis glomerata L.) i sposobów jego zmniejszenia, przez zastosowanie wapnowania, dodatku słomy i węgla brunatnego do gleby. Dodatek do gleby niklu, niezależnie od jego dawki, powodował zwiększenie jego zawartości w roślinie testowej oraz w glebie, zwłaszcza we frakcji F1. Na obiektach z dodatkiem niklu do gleby jego zawartość w biomasie kupkówki pospolitej przekraczała zawartości graniczne. Wapnowanie gleby wpłynęło na zmniejszenie zawartości niklu w kupkówce pospolitej oraz w wydzielonych frakcjach z gleby – rozpuszczalnej F1, redukowalnej F2 i utlenialnej F3. Wprowadzenie do gleby słomy żytniej i węgla brunatnego spowodowało zmniejszenie zawartości niklu w testowej trawie oraz jego ilości we frakcji biodostępnej F1. Wapnowanie, jak też zastosowane do gleby słoma żytnia i węgiel brunatny ograniczyły fitoprzyswajalność niklu.
 
REFERENCES (32)
1.
Antonkiewicz J., Jasiewicz C., Koncewicz-Baran M., Sendor R., 2016. Nickel bioaccumulation by the chosen plant species. Acta Physiol Plant 38:40, doi:10.1007/s11738-016-2062-5.
 
2.
Ashworth D., Alloway B.J., 2004. Soil mobility of sewage sludge – derived dissolved organic matter, copper, nickel and zinc. Environ. Pollut., 127, 137-144, doi:10.1016/S0269-7491(03)00237-9.
 
3.
Badora A., 2002. Influence of pH on the mobility of elements in soils (in Polish). Zesz. Prob. Post. Nauk Roln., 482, 21-36.
 
4.
Campel M., Nikel G., 2006. Nickel: A review of its sources and environmental toxicology. Pol. J. Environ. Stud., 15(3), 375-382.
 
5.
Dickson N., Gazzola C., Beakeley R. L., Zerner B., 1975. Jack bean urease [EC.3.5.15]. Metalloenzyme. A simple biological role for nickel. J. A. Chem. Soc., 97, 4130-4133.
 
6.
Domańska J., 2009. The content and uptake of Ni by plants at differentiated pH of natural, and Cd or Pb contaminated soils (in Polish). Ochrona Środ. i Zas. Nat., 40, 236-242.
 
7.
Eisler R., 2000. Nickel. In: Hand book of Risk Assessment – Health Hazards to human, plants and animals. Vol. I: Metals. Boca Raton – London – New York, Levis Publishers.
 
8.
Gibczyńska M., Stankowski S., 2011. Changes of cadmium, nickel and lead content in Festulolium braunii grass grownon on beddings made from sewage sludge and coal fluidal ash together with effective microorganisms (in Polish). Zesz. Probl. Post. Nauk Roln., 565, 63-70.
 
9.
Gorlach E., Gambuś F., 2000. Potentially toxic trace elements in soils (excess, disease and counteraction) (in Polish). Zesz. Probl. Post. Nauk Roln., 472, 275-296.
 
10.
Isen H., Altundag H., Keskin C.S., 2013. Determination of heavy metal contamination in roadside surface soil by sequential extraction. Pol. J. Environ. Stud. 22(5), 1381-1385.
 
11.
Jaremko D., Kalembasa D., 2011. The speciation of nickel in arable stagnic luvisols located on Siedlce Upland (in Polish). Inżynieria Ekologiczna 27, 19-25.
 
12.
Jasiewicz Cz., Baran A., Tarnowski M., 2010. Effect of bottom sediment on content, bioaccumulation and translocation of heavy metals in maize biomass. J. Elementol., 16(2), 281-290.
 
13.
Kabata-Pendias A., 2011. Trace elements in soils and plants. IV wyd.CK, Press, Boca Ration, Pl.
 
14.
Kabata-Pendias A., Pendias H., 1999. Biogeochemia pierwiastków śladowych. PWN. Warszawa.
 
15.
Kacálková L., Tlustoś P., Száková J., 2014. Chromium, nickel, cadmium, and lead accumulation in maize, sunflower, willow and poplar. Pol. J. Environ. Stud., 23(3), 753-761.
 
16.
Kalembasa S., Kuziemska B., Kalembasa D., Popek M., 2014. Effect of liming and addition of organic materials on yielding and levels of nitrogen, phosphorus and sulphur in biomass of cock’s foot (Dactylis glomerata L.) grown un-der conditions of varied content of nickel in soil (in Polish). Acta Agroph., 21(1), 35-50.
 
17.
Korzeniowska J., Stanislawska-Glubiak E. 2018. Phytoremediation potential of Phalaris arundinacea, Salix viminalis and Zea mays for nickel-contaminated soils. Int. J. Environ. Sci. Technol, doi:10.1007/s13762-018-1823-7.
 
18.
Koszelnik-Leszek A., Bielecki K., 2013. Response of selected silene vulgaris ecotypes to nickel. Pol. J. Environ. Stud., 22(6), 1741-1747.
 
19.
Kuziemska B., 2009.The influence of increasing amounts of nickel in the soil on the yield and chemical composition of selected species of fabaceae (in Polish). Rozpr. Nauk., Nr 102, Wydawnictwo AP w Siedlcach.
 
20.
Kuziemska B., Kalembasa D., Kalembasa S. 2014. Effect of liming and organic materials on content of selected metals in of cocksfoot grown in soil contaminated with nickel (in Polish). Acta Agroph., 21(3), 293-304.
 
21.
Kuziemska B., Kalembasa S., 2013. Effect of liming and sewage sludge addition on the distribution of the fraction of Zn and Cr in soil contaminated with nickel (in Polish). Proceedings of ECOpole, 7(1), 215-221. doi:10.2429/proc.2013.7(1)028.
 
22.
Molas J.S., 2000. The uptake of nickel by cabbage plants (Brassica oleracea L.)and its phytotoxicity in relation to the chemical form applied to the substrate (in Polish). Zesz. Nauk. UP w Lublinie, 341.
 
23.
Nieminen T.M., Ukonmaanaho L., Rausch N., Shotyk W., 2007. Biogeochemistry of Nickel and its release into the environment. Met. Ions. Life Sci., 2, 1-30.
 
24.
Olko A., 2009. Physiological aspect of plant heavy metal tolerance (in Polish). Kosmos-Problemy Nauk Biol., 58 (2), 221-228.
 
25.
Polish soil classification, fifth edition. 2011 (in Polish). Soil Science Annual, 62(3).
 
26.
Raulet G., Lopez-Sanchez J.F., Sahuquillo A., Rugio R., Davidson C., Ure A., Quevauculler Ph., 1999. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J. Environ. Monit., 1, 57-61, doi:10.1039/a807854h.
 
27.
Smolińska B., Król K., 2011. Leaching of nickel from soil samples of the Lodz agglomeration (in Polish). Ochrona Środ. i Zas. Nat., 49, 228-238.
 
28.
Spiak Z., 1995. The influence of increasing doses of nickel on the content of available forms of this element in soils (in Polish). Zesz. Probl. Post. Nauk Roln., 418, 513-517.
 
29.
Weng L.P., Wolthoorn A., Lexmond, Teminghoff E.M., Van Riemsolijk W. H., 2004. Understanding the effects of soil Characteristics on phytotoxicity and bioavailability of nickel using speciation models. Environmental Science and Technology, 38, 156-162, doi:10.1021/es030053r.
 
30.
Węglarzyk K., 2001. Contamination of soils with heavy metals with special regard to nickel (in Polish). Biuletyn Informacyjny Instytutu Zootechniki, 39(4), 84-88.
 
31.
Wyszkowski M., Modrzewska B., 2016. Acidity and sorption properties of zinc contaminated soil following the application of neutralizing substances. J. Ecol. Eng., 17(1), 63-68. doi:10. 12911/22998993/61191.
 
32.
Zasadowski A., Spodniewska A., 1995. Arsenic and nickel in the environment and the body of animals (in Polish). Acta Acad. Agricult. Tech. Olst. Veterinaria, 22, 125-131.
 
eISSN:2300-6730
ISSN:1234-4125