The effect of fertilization and effective microorganisms on buckwheat and millet
More details
Hide details
Department of Agronomy, West Pomeranian University of Technology Szczecin, Poland
Department of Agronomy, West Pomeranian University of Technology in Szczecin
Anna Jaroszewska   

Department of Agronomy, West Pomeranian University of Technology Szczecin, Poland
Publish date: 2019-12-02
Final revision date: 2019-11-05
Acceptance date: 2019-11-05
Acta Agroph. 2019, 26(3), 15–28
The experiment was conducted in 2016 and 2017 in the vegetation hall of the Faculty of Environmental and Agricultural Development, West Pomeranian University of Technology in Szczecin. The main goal of the study was to assess the influence of the biological preparation of effective microorganisms (EM), mineral and natural fertilization on: the yield of buckwheat (Fagopyrum Mill.) and millet (Panicum miliaceum L.), the SPAD index (leaf greenness index), the content of macro- and microelements in grain (N, P, K, Ca, Mg, Na, Cu, Mn, Mo, Fe and Zn), pHKCl, the content of organic C (Corg), macro- and microelements (N, P, K, Ca, Mg, Cu, Mn, Fe and Zn) in soil. Both of the species studied responded with a significantly higher yield due to natural fertilization. The positive role of the EM used should be emphasized, especially in relation to the soil. In buckwheat and millet plots, in which EM were applied, there was an upward trend in the concentration of the investigated macronutrients in the soil. The experiment conducted shows that microbiological preparations can improve the chemical properties of the soil, and the nature of their activity may depend on their type, dose, the species of the plant, the stage of development during which it is applied, and the climate and soil conditions.
The Authors does not declare conflict of interest.
Adams A.M., Gillespie A.W., Kar G., Koala S., Ouattara B., Kimaro A.A., Bationo A. Akponikpe P.B.I., Schoenau J.J., Peak D., 2016. Long term effects of reduced fertilizer rates on millet yields and soil properties in the West-African Sahel. Nutr. Cycl. Agroecosys., 106, 17-29, https://doi 10.1007/s10705-016-9786-x.
Aktar M.W., Sengupta D., Chowdhury A., 2009. Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip. Toxicol., 2(1), 1-12, https://doi: 10.2478/v10102-00....
Amro S.M., Salama, Omima M., El-Sayed, Osama H.M., El Gammal., 2014. Effect of effective microorganisms (EM) and potassium sulphate on productivity and fruit quality of “Hayany” date palm grown under salinity stress. J. Agric. Vet. Sci., 6, 90-99, https://doi: 10.9790/2380-07619099 .
Babaeian M., Esmaeilian Y., Tavassoli A., Asgharzade A., Sadeghi M., 2011. The effects of water stress, manure and chemical fertilizer on grain yield and grain nutrient content in barley. Sci. Res. Essays., 6, 3697-3701, https://doi: 10.5897/SRE11.602.
Behera S.K., Singh M.V., Singh K.N., Todwal S., 2011. Distribution variability of total extractable zinc in cultivated acid soils of India and their relationship with some selected soil properties. Geoderma, 162, 242-250, https://doi: 10.1016/j.geoderma.2011.01.016.
Bohrer G., Kagan-Zur V., Roth-Bejerano N., Ward D., Beck G., Bonifacio E., 2003. Effects of different Kalahari-desert VA mycorrhizal communities on mineral acquisition and depletion from the soil by host plants. J. Arid Environ., 55(2), 193-08, https://doi: 10.1016/S0140-1963(03)00047-8.
Dąbrowska G., Zdziechowska E., 2015. The role of rhizobacteria in the stimulation of the growth and development processes and protection of plants against environmental factors. Progress in Plant Protection, 55, 498-506.
Dembiras A., 2005. Glucan and mineral nutrient contents of cereals grown in Turkey. Food Chem., 90, 773-777, https://doi: 10.1016/j.foodchem.2004.06.003.
Estrada-Campuzano G., Slafer G.A., Miralles D.J., 2012. Differences in yield, biomass and their components between triticale and wheat grown under contrasting water and nitrogen environments. Field Crop. Res., 128, 167-179, https://doi: 10.1016/j.fcr.2012.01.003.
Francke A., 2010. The effect of magnesium fertilization on the macronutrient content of Pepinodulce (Solanum muricatum Aiton) fruit. J Elem., 15, 467-475, https://doi: 10.5601/jelem.2010.15.3.467-475.
Hokmalipour S., Darbandi M.H., 2011. Effects of nitrogen fertilizer on chlorophyll content and other leaf indicate in three cultivars of maize (Zea mays L.). World Appl. Sci. J., 15, 1780-1785.
Ihedioha J.N., Okoye C.O.B., 2011. Nutritional evaluation of Mucuna flagellipes L. leaves: an underutilized legume in Eastern Nigeria. Am. J. Plant Nutr. Fert. Technol., 1, 55-63, https://doi: 10.3923/ajpnft.2011.55.63.
Jakubus M., Kaczmarek Z., Gajewski P., 2010. Influence of increasing doses of EM-A preparation on properties of arable soils. Part II. Chemical properties (in Polish). Journal of Research and Applications in Agricultural Engineering, 53, 128-132.
Kaczmarek Z., Owczarzak W., Mrugalska L., Grzelak M., 2007. The influence of effective microorganisms for some of physical and water properties on arable-humus horizons of mineral soils (in Polish). Journal of Research and Applications in Agricultural Engineering, 52, 73-77.
Kalinová J., 2002. Comparison of productivity and quality in common buckwheat and proso millet (in Czech): doctoral dissertation. University of South Bohemia, 175.
Kalinová J., Moudrý J., Čurn V., 2005. Yield formation in common buckwheat (Fagopyrum Esculentum Moench). Acta Agronomica Hung., 53, 283-291, https://doi: 10.1556/AAgr.53.2005.3.5.
Khaliq A., Abbasi M.K., Hussain T., 2006. Effect of integrated use of organic and inorganic nutrient sources with effective microorganisms (EM) on seed cotton yield in Pakistan. Bioresour. Technol., 97, 967-972, https://doi: 10.1016/j.biortech.2005.05.002.
Khan H.Z., Iqbal S., Akbar N., Saleem M.F., Iqbal A., 2013. Integrated management of different nitrogen sources for maize production. Pak. J. Agric. Sci., 50, 55-61.
Koziara W., Panasiewicz K., Sulewska H., Sobieszczański R., 2015. Effect of selected factors on yield and seed. Fragm. Agron., 32, 73-81.
Linh NTN., Khoa AVD., Halas V., 2014. Buckwheat as valuable feed and food resource. NJMBS, 2, 1-8, https://doi: 10.20286/nova-jmbs-030459.
Mahmood F., Khan I., Ashraf U., Shahzad T., Hussain S., Shahid M., Abid M., Ullah S., 2017. Effects of organic and inorganic manures on maize and their residual impact on soil physico-chemical properties. J. Soil Sci. Plant Nutr., 17, 22-32, https://doi: 10.4067/S0718-95162017005000002 .
Majkowska-Gadomska J., 2006. Effect of sorbents on concentrations of some trace elements in butter-head lettuce (Lactuca sativa L. var. capitata L.). Pol. J. Environ. Stud., 15, 415-441.
Muthaura Ch., Musyimi D.M., Ogur J.A., Okello S.V. 2010. Effective microorganisms and their influence on growth and yield of pigweed (Amaranthus dubians). J. Agric. Biol. Sci., 5, 17-22.
Okoroafor I.B., Okelola E.O., Edeh O.N., Emehute V.C., Onu C.N., Nwaneri T.C., Chinaka G.I., 2013. Effect of organic manure on the growth and yield performance of maize in Ishiagu, Ebonyi State. J Agric.Vet. Sci., 5, 28-31,
Piskier T. 2006. Reaction of spring wheat to the application of bio-stimulators and soil absorbents (in Polish). Journal of Research and Applications in Agricultural Engineering, 51, 136-138.
Polish Soil Classification., 2011. Soil Sci. Ann., 62, 1-193.
Priyadi K., Abdul H., Siagian T.H., Nisa C., Azizah A., Raihani N., Inubushi K., 2005. Effect of soil type, applications of chicken manure and effective microorganisms on corn yield and microbial properties of acidic wetland soils in Indonesia. Soil Sci. Plant Nutr., 51, 689-691, https://doi: 10.1111/j.1747-0765.2005.tb00092.x.
Radkowski A., Radkowska I., 2018. Influence of effective microorganisms on the dry matter yield and chemical composition of meadow vegetation. J Elem., 23, 509-520, https://doi: 10.5601/jelem.2017.22.3.1441.
Ramakrishnaiah G., Vijaya T., 2013. Influence of VAM fungi, Azotobacter sp. and PSB on soil phosphatase activity and nutrients (N, P, K, Cu, Zn, Fe and Mn) status in the rhizosphere of Stevia rebaudiana (Bert.) plants. Am. J. Plant Sci., 4, 1443-1447, https://doi: 10.4236/ajps.2013.47176 .
Rapparini F., Peñuelas J., 2014. Mycorrhizal fungi to alleviate drought stress on plant growth. Miransari M. (ed.). Use of microbes for the alleviation of soil stresses. Springer, p. 21-41,
Ruiz-Sánchez M., Aroca R., Muñoz Y., Armada E., Polón R., Ruiz-Lozano J.M., 2010. The arbuscular mycorrhizal symbiosis enhances the photosynthetic efficiency and the antioxidative response of rice plants subjected to drought stress. J. Plant Physiol., 167, https://doi: 862-869, 10.1016/j.jplph.2010.01.018.
Rutkowska B., Szulc W., Łabętowicz J., 2009. Influence of soil fertilization on concentration of microelements in soil solution of sandy soil. J Elem., 14, 349-355, https://doi: 10.5601/jelem.2009.14.2.15.
Siwik-Ziomek A., Lemanowicz J., 2014. The content of carbon, nitrogen, phosphorus and sulphur in soil against the activity of selected hydrolases as affected by crop rotation and fertilisation. Zemdirbyste-Agriculture, 101(4), 367-372, https://doi: 10.13080/z-a.2014.101.046.
WRB., 2014. World reference base for soil resources. World Soil Resources Reports, FAO, Rome, 106.
Yamada K., Xu H.L., 2001. Properties and applications of an organic fertilizer inoculated with effective microorganisms. J. Crop Prod., 3(1), 255-268, https://doi: 10.1300/J144v03n01_21.
Yang H., Li J., Yang J., Wang H., Zou J., He J., 2014a. Effects of nitrogen application rate and leaf age on the distribution pattern of leaf SPAD readings in the rice canopy. Plos ONE, https://doi 10.1371/journal.pone.0088421.
Yang H., Yang J., Lv Y., Junjun H., 2014b. SPAD values and nitrogen nutrition index for the evaluation of rice nitrogen status. Plant Prod. Sci., 17, 81-92, https://doi: 10.1626/pps.17.81.
Yusuf A.A., Mofio B.M., Ahmed A.B., 2007. Proximate and mineral composition of Tamarindus indica Linn. 1753 seeds. Sci. World J., 2, 1-4, , https://doi: 10.4314/swj.v2i1.51699.
Zydlik P., Zydlik K., 2008. Impact of biological effective microorganisms (EM) preparations on some physic-chemical properties of soil and the vegetative growth of apple-tree rootstocks. Science Nat Technol., 2, 1-7.