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Abstract. Near Infra-Red Spectroscopy (NIRS) ia@d and cost-effective method widely used
for the determination of chemical composition ofi@agtural products. Reflectance spectra recorded i
near infra-red region for a set of samples of knmemposition are used for establishing calibration
model by use of one of standard multivariate cafion methods, like MLR (multiple linear regression
PCR (principal component regression) or PLS (dde#st squares). Multivariate calibration is & témat
can be tried to be solved with artificial neuratwerks (ANNs) as well. The present paper is ainted a
assessing the applicability of artificial neuratwarks as a tool for the determination of the contef
main nutritional components of rapeseed meal: iproty mass, fibre and oil, on the basis of NIRS
measurements. To the knowledge of the authors,aperphas been published on modelling of the
dependence of chemical composition of rapeseed angaNIR spectra with ANNs. Two most popular
types of ANNSs are tried in this work: multi-layegrpeptron (MLP) and radial basis function (RBF)eTh
obtained results show that chosen types of ANNgoavide models of performance comparable to that
characterizing models built with MLR.
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INTRODUCTION

For many years one can observe wider and wider use of NearRkedra
Spectroscopy (NIRS) in the determination of chemical composition of agraultu

products, food, food components and beverages. The reasons behind this tendency

are numerous and well known [11,20]. The main of them can be suradcharis
under the headlineost-effectivenes®©ver decades, two streams in the develop-
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ment and improvement of NIRS applications can be clearly g@egress in
instrumentation and progress in processing theltsesfi measurements. Efforts
within the latter stream, if directed towards esticn of chemical information, are
well known as chemometrics. Chemometrics is clogelgted to many other
branches of science oriented on the interpretaiforeal-world data, like applied
statistics, artificial intelligence, and some othéks a consequence, chemometrics is
a vital branch that still absorbs new ideas andhoast This can be also seen within
the applications of NIRS in compositional analysis ofifand food-related products.
In particular, the potential of Artificial Neural @dvorks (ANNs) as a tool for
extraction of chemical information from NIR specisaan example of more recent
efforts in chemometrics. The standard approacltinémical characterization of food
with NIRS is to use one of the methods elaboratedptirposes of multivariate
calibration, such as MLR, PCR or PLS. Howevers ialways worth to evaluate the
potential of any other possibility in order to camit the quality of the results it
provides with the results coming from more standadals. The aim of the present
contribution is to evaluate the virtue of applicatad ANN as compared to the results
that can be obtained by means of traditional metlfiodmultivariate calibration [7]
within a specific task defined as determining themical composition of rapeseed
meal from NIRS. Two types of popular feedforward Mé\were chosen, i.e. with
multi-layer perceptrons (MLP), and radial basiscfions (RBF).

PRINCIPLES OF ARTIFICIAL NEURAL NETWORKS

For many years ANNs have attracted much attentiorwookers from various
branches. Consequently, huge literature on thesuéxists. General and exhaustive
introductions to the subject can be found in nunrereandbooks, for instance in
[12,13,15]; herein just the foundations of the mpepular types of ANNs are
presented and followed with a more detailed desonipf the present application.

Figure 1 depicts the architecture of a simple ANN consistihglements
displayed in three functional layers. From the left, theranagputs (in thenput
layer) transmittingni signals to each afh neurons in the so-callddddenlayer.
The last layer consists of a single element, i.e. a sirgleon in theutputlayer.

In general, the number of hidden layers can be arbitrary asasviie number of
neurons,no, in the output layer. The latter typically is equal to the nundfer
dependent variables, white — to the number of input variables.

The scheme of the architecture shown in Figure 1 is common foypbe of
ANNSs that have been decided to be applied in the present wortq the types
where the signals are transmitted in one direction without eag-thacks. This
type of ANNSs is called feed-forward nets. Within this categorg can find some
differences, first of all referred to the way in which neuron&idden layer(s)
transform signals from their inputs to their outputs. From pbist of view, one
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can distinguish two popular cases: multilayer perceptron (MLP)radidl basis
functions (RBF), both chosen to be tried in the present work.

Training of the ANN relies on adaptation of the valuesarhe parameters
(weights and biases in MLP, or centroids and widths in RBF)hAsiumber of
parameters to be adapted increases with the number of neuronstictihen
architectures need more numerous training sets. Since tHientonber of the
measured rapeseed meal samples is not very numerous in thet jgaese study,
it is reasonable to limit the number of neurons and to constidblsAspecific to
each of rapeseed meal constituents.

The net has to be trained in order to model in a satisfactonglfindf certain
criteria) way the dependence between input and output varidiilissunknown
dependence is embedded in the data, and training (learning) riestiligling
a set of parameters of the net that enable the net to approximatelationship
between the inputs and outputs.

Multilayer perceptron (MLP)

Multilayer perceptron together with error back-propagation leamilggused
in modelling of the dependency between input and output sets dbleari@eate
the most popular approach within applications of ANNs. Propertiggsotype of
ANN are determined by the way in which particular neurons geoteeir input
signals into output signals. A single neuron participation in tfusgssing can be
schematically depicted as in Figure 2, and explained in several points:

- each neuron accepts input signaland generates its output signal y,

- each input has its weight;, which ascribes the importance to the infor-

mation coming from the input,

- each neuron has its bias (threshold valwa), which influences the

intrinsic activation of the neuron,

- intrinsic activation of the neuros, equals tos = Zwi X +W,,
i=1
- the output isy = f(s), where f(.) is the transfer function of the neuron.
The transfer function can be of different shapes, either limeaon-linear. The
most popular is the sigmoidal transfer function, either in its anibi-polar
variant, given by the formula

1
-+ 1
1©) 1+exp( —4s)’ 1)
or
-2 4 2
(s) on 79 1, 2>0 2)

respectively.
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%
Fig. 1. The architecture of ANNs used in tiwork
X
y
t>
Fig. 2.Neuron model in MLP type nets

The output signal of the whole nel, to an input vectox, of MLP-ANN with ni

input neurons, one hidden layer with neurons, and one output neuron is (cf.
Figs. 1 and 2)

nh ni
9: fo[WO +ZWj fh(zwjixi +WjOJJ (3)
j=1 i=1

wheref, andf, are transfer functions of output and hidden neurons, respectively.

Training of a net with MLP starts with setting initial values of tregghts and
biases, usually at random. As a consequence, these paraméterdrained net
may be not the same when the training is repeated.
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Radial basis function (RBF)

This category of ANNs uses transfer functions dlialashape, often Gaussian,
adopted to each hidden neuron. Gaussian radial function for-tthénidden
neuron can be written as

oo Eo

wherex is the vector of input variables,andg; are the centroid artde width of
the function, respectively. RBF-ANNs usually contain a singlieldm layer, and
the weights between the input and the hidden layers are setyoThe output
signal (cf. Fig. 1) is calculated as a weighted sum of the radialfbastions

nh
9=Z\Ni@i 0|X_Ci||’o-i) (5)
i=1
wherenh is the number of hidden neurong,is thei-th weight between hidden
and output layers.

RBFs are known to allow modelling of non-linear dependencies wittear
approach, which ensures optimal weights for signals betweennhaddk output
layers to be set for a given training set and archite¢®yi®]. This means that
after training the net reaches the same parameters for thdraarmey data.

By comparison of equations (3) and (5) one can see that radildns act
locally because their significant values occur closectonly, while with
increasing distancgx —c|| they fall rapidly. In MLP-ANN transfer functions act

globally, because all the componentsxdhfluence the intrinsic activation of the
neuron proportionally to the values of suitable weights. Hence tsnwith MLP
processing ok with sigmoidal transfer function has a global character [12].

Modelling

Typical tasks that appear when using ANN refer to: (i) pepgration of the
data (see next section) and (ii) the size of the data aegelenough data sets
being available is the most desired situation, however very tf sets are not
numerous enough to be simply split into training and prediction sulbsdtare
needed to perform training (modelling) of the net and evaluatidheofesult.
Details of the problems are extensively discussed in the literégee, e.g. [4]).

A large data set characterizes the modelled dependenceantmately and
in more details. Moreover, such a set can be split into catibratid external test
subsets at random, making the subsets likely independent. Theplaiperty is
not fulfilled when less numerous data set is split, since igglitteeds special
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algorithms to ensure statistical similarity of both subse¢saBse the number of
samples was not largbl{or = 69), duplex algorithm for splitting [16,17] was used
and calibration subset ®fc = 50 samples and external test subsdthgér= 19
were formed. As the calibration set is not large enough, the sutddbinte Carlo
cross-validation procedure [1] can be used in training of theThet. procedure
selects a part of the calibration set as a training setiseslthe remaining part as
an internal test set and monitoring set. The latter sps dearning algorithm (so-
called early stoppingprocedure [1,2] was used), then partial error RMSECV is
calculated for the internal test set. This sequence istegp88 — 50 times, then
total RMSECYV is assumed as the mean of the errors obtainadl foternal test
sets. Finally, the net is tested on external test set in ordalctdate RMSEP (see
Tab. 1). In this work the training set includisigk, = 40 samples, the monitoring
and internal test s&yon = Ncv = 5 samples, and the humber of splits of training
set equalfNyc = 50. The Levenberg-Marquardt optimization method [2,5] was
applied for setting weights in all learnings. Performancenpaiers used for the
assessment of the models are listed and explained in the table below.

Table 1. Parameters chosen for assessment of performameedsfs

Name of performance index Formula
X 2
Z (yi Y )
R? R2=1—2
n
coefficient of multiple Y
determination Z (y Y )

i=1
wheren = N¢ for calibration set aneh = Nygs7 for external
validation subset.

Nwc Nx

RMSEC (CV) 335, -, f
root mean squared error of RMSEC.RMSECV = 1/2 =
calibration (cross-validation) ’ N, .N

RMSEP
root mean squared error of
prediction

RER _
ratio of the range to the standard RER = M
error of prediction RMSEF
y, is the value of concentration of constituent famplei predicted by the model from the
spectrum, andy; is the value of concentration of constituent famplei determined with the
reference method.
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For RBF-ANN, a frequently used approach is the regularizatioreduve [9]
which results both in stabilization of the training process anuidang of
overtraining. In the present work, the so-callachl ridge regressiomethod was
chosen for this purpose. Additionally, the forward selection phaeewas used
for establishing the optimal numbenhf of neurons in the hidden layer. The
coordinates of objects from the calibration set were the pessbtresg) ando;
was common for all radial functions. Training of RBF-ANN does neéd
calibration set to be split into subsets, hence RMSECV was not cattulat

DATA AND DATA PRE-TREATMENT
Data

The set of data consisted of 69 reflectance néardéu spectra recorded for 69
rapeseed meal samples of chemical compositionndieied with approved chemical
methods [8] (for more details see accompanying mppfie Determining chemical
composition of the samples from NIR measurements, i¢emnts of four compounds
(protein, dry mass, fibre and oil), was the goahofielling with ANNSs.

Data pre-treatment

Multiple scatter correction (MSCYhe MSC is the most commonly used pre-
treatment of NIR reflectance spectra aimed at reducingpieulicattering effect
present when measurements come from granular samples [6]. sVi&tformed
on subsets of original spectra selected for calibration andxternal test sets.
The spectra of external test sets are MSC transformedsbyof the mean
spectrum obtained from the MSC of the calibration set.

Selection of input variablesThe number of wavelengths in the spectra is
equal to 700, and it is too large for direct use of all ofntlas input variables for
ANN. Therefore, a reduction of the number of input variables tobset of
reasonable size, e.g. to some tens, is needed. With this aisp-tatled CVU
method, recently proposed for wavelength selection in multteagalibration
[14], has been applied.

Scaling of input variablesThis step is necessary in order to avoid the
situation when a large change in neuron intrinsic activasioran result in a low
change of its output because of saturation in transfer funaetails on scaling
can be found in [4]). In this paper the input varialkesvere scaled (after
centring) to the range of (-1,1), i.e. to the quasi-linear range olimzar transfer
function. Scaling of the data from the external test set iedcaling parameters
determined on the calibration set. Since transfer function preceigeals de-
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pendent also on weights, it is recommended to chose initiahtseigth a special
method, e.g., the Nguyen-Widrow method [5,18]. Also output signaleréreie
data) have to be scaled. When the transfer function of output nesroios-
linear, the range recommended for scaling is 0.2 to 0.8, whidarlifunctions
usually make scaling not necessary, although in some casieg $sakcommen-
ded as well [4]. In this paper the reference data (contéminstituents) were not
range scaled. For RBF-ANN results of scaling and centrirtbeofnput data can
be effectively replaced with a suitable choice of ced&raind widths in the
transfer functions.

COMPUTATIONS AND RESULTS

Computer simulations of NN were performed with Neural Netwodtbox -
Matlab 6.5 package [2]. Splitting of the data was performed th&hCalibration
toolbox [17]. Building calibration models by means of RBF wasi@adrut with
Matlab Routines for Linear Neural Network toolbox [10]. Remainialgulations
were made with software developed by the authors.

The first task for MLP-ANNs was to determine the optimuch#ecture. For
a given number of hidden neurons, changed steeply between 2 and 10, the
numbers of neurons in the input layer (between 2 and 10) werd.tEsteeach
architecture, calibration was performed fivefold, then the nemaoh standard
deviation of the performance parameters of the obtained madeéscalculated.
The transfer functions used in the hidden layer were uni-gajanoid (eqn. 1)
and the transfer functions in the output layer were lingathe RBF-ANNSs the
value of g; was determined by optimisation of the models obtained for
ni0{ 2,3,..,1¢ while ¢; changed between 0.02 to 2 with step of 0.02. The calibra-

tion and external test sets were the same as those used for MLP.

Mean values and standard deviations of performance parametdh®e of
models obtained for five series of trainings (mean valuespfotein were
calculated for four trainings only since in one training the tegas$ far from the
remaining ones) are listed in Table 2. Parameters obtéimefibre were less
reproducible both for MLP and RBF (see Tab. 3). The most importanhptea
is RER (see Tab. 1) as it shows the relation between @fdhe model and the
range for content of the constituent. Comparison of thiarpeter for both types
of networks does not show noticeable differences, except fowbédre RBF
gives a considerably better (larger) value.

Optimal size of MPL nets were low, especially in the hiddgarlavhere 2 or
3 neurons only were necessary. The number of inputs was thesgrimat the
modelling of protein and oil, however 10 and 7 inputs, respectivedynat very
high. It is worth pointing out that for dry mass and fibre only 2 inputs wedede
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(i.e. only 2 wavelengths) in order to obtain quittisfactory models. Comparison of
the architectures for MPL and RBF nets shows censidly greater number of
neurons in the hidden layer. This can be expededuse of general properties of this
type of ANN [3]. One can also see that the numbérputs in RBF weakly depends
on modelled constituent and ranges between 6 and 8.

Table 2.Mean values and standard deviations of performaa@meters for models from MLP-ANN

. RMSEC RMSECV RMSEP
Consti-  Model Set R (%) (%) (%) RER
tuent -
ni-nh-no mean std. mean std. mean std. mean std. mean std.
protein 10-2-1 cal. 0.89 0.01 0.94 0.03 1.00 0.04 095 0.05 10.8 0.6

test 0.86 0.02

dry mass 2-2-1 cal. 095 0.00 0.26 0.01 0.29 0.01 0.32 0.01 23.7 0.5
test 0.96 0.00

fibre 2.3 Cal- 084 000 oo/ 505 101 016 088 005 101 05
test 078 0.02

oil 7-3-1 cal. 0.98 0.0 0.16 0.01 0.18 0.01 0.35 0.02 244 1.6
test 0.96 0.00

Table 3. Performance parameters for models from RBF-ANN

Constituent n'i\{lr?:-?:o 0 id —— RMSEC (%) RMSEP (%)  RER
protein 8-7-1 0.86 0.85 0.94 0.97 105
dry mass 7-3-1 0.93 0.95 0.29 0.36 20.8
fibre 7-15-1 0.97 0.86 0.34 0.71 125
oil 6-10-1 0.98 0.98 0.16 0.23 36.6

Parameters of the models obtained with both typesNiNs are similar to the
results obtained with MLR (Tab. 4). One can semftie above table that fibre and
oil need considerably greater numbers of wavelangtte involved in MLR models
than when neural networks are used for
modelling. The best modelling Consti:l’able 4.Results of MLR method (from ref. [8])

tuent with a_lll methods of modglllng Constituent A RER No. of
considered in the present work is ol wavelengths
Very satisfactory models could be ob- protein 0.82 9.4 9
tained also for dry mas%, v(\j/hile r_emaéi)ln— drymass  0.92 212 4
hing constituents provided noticeably fibre 0.88 130 15
less valuable models, although still

0.98 42.2 11

acceptable for purposes of quality °!
control.
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CONCLUSIONS

Comparison of the models provided by two types of networks shows that
MLP-ANNs need simpler architecture. An exceptionally low numifeinput
variables is necessary when dry mass and fibre are modellddARBSs are
more extended, especially in the hidden layer. On the other hand, fasthefc
oil, this type of net provided a model of very good performanbteréfore, the
obtained results do not indicate any clear advantage of any one type of ANN.

Comparison of the results of ANNs and MLR shows the models afkarsim
with the exception of oil, where RER from MLR is considerablydseHowever,
the number of wavelengths needed in MLR tends to exceed the numbputsf i
in MLP-ANNSs, like in the case of RBF-ANNS.

To conclude, although the presented results for modelling ofahiert of
four compounds in rapeseed meal from NIRS are preliminary, they hat
calibration models that can be obtained from linear multivadalibration are of
better performance compared to the results from ANNs. Tharebe several
reasons for this situation:

- not large enough sets of data,

- not optimal choice of the methods for both input variables seteeind

scaling of the output signal,

- common widths in transfer functions for RBF-ANNS.

Suitable modifications made according to the points listed atmvdre expected
to result in improvement of the ANN’s models.
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SZTUCZNE SIECI NEURONOWE W ANALIZIE SKEADNIKOWESRUTY
RZEPAKOWEJ NA PODSTAWIE NIRS — MZLIWOSCI ZASTOSOWAN
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Streszczenie. Spektroskopia w bliskiej podczerw{BHRS) jest szybk i wydajra metod,
szeroko wykorzystywando okrélania sktadu chemicznego produktéw rolniczych. Wadodbi-
ciowe zarejestrowane w obszarze bliskiej podczenwidia zbioru prébek o znanym skfadzie
wykorzystuje si do ustalenia modelu kalibracyjnego przyyciu standardowych metod wielo-
wymiarowej kalibracji, takich jak MLR, PCR lub PL®Vielowymiarowa kalibracja jest zadaniem,
ktore mae by réwniez rozwiazane przez sztuczne sieci neuronowe (ANNs). Celgmracy jest
ocena meliwosci zastosowd sztucznych sieci neuronowych jako n@za do okréania
zawartdci gtownych sktadnikéw adywczych $ruty rzepakowej: biatka, suchej masy, wiokna
i thuszczu na podstawie pomiaréw NIRS. Wedtug wiedatoréw w literaturze nieasznane prace
na temat modelowania zateici skladu chemicznegéruty rzepakowej na podstawie widm NIR
przez ANNs. W pracy zastosowano dwa najpopulaméejypy sztucznych sieci neuronowych:
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perceptron wielowarstwowy (MLP) i siez radialnymi funkcjami bazowymi (RBF). Otrzymano
rezultaty w postaci modeli, ktérych jadjest poréwnywalna z jakoia modeli maliwych do
uzyskania za pomadLR.

Stowa kluczowe:$ruta rzepakowa, sztuczne sieci neuronowe, spekipiskw bliskiej
podczerwieni



