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Abstract. A typical task in chemometrics is toiraste the linear relationship between two
sets of variables, i.e. the set of spectra, X, thiedconcentrations of some sample constituents, Y.
Among the classical regression methods, partiatlsegquares (PLS) is one of the most commonly
used tools. One of the complications which couldatieely affect the interpretation of the PLS
model is related to the systematic variation pregerx that is unrelated with the variation in Y.
This situation typically occurs when X variablepnesent the absorbance or reflectance measured at
hundreds of wavelengths, and the measurementscasbty influenced by sources of different
types of variation having nothing in common witte tinformation of interest. Orthogonal signal
correction (OSC) is a recently proposed pre-proogssethod that seems to be promising in this
context. This approach determines and removes §peotral data X the part of information which
is Y-orthogonal (i.e. not correlated with Y). Therpose of the present paper is to illustrate haw th
technique works in application to near infraredRINbpectra of rapeseed meal. The results of PLS
modelling for OSC pre-processed data have been a@adwith those of non-pre-processed as well
as with those after multiplicative scatter correetiMSC). The main noticeable advantage of the
OSC approach was the simplification of the cal@daPLS models. It was also found that the
combination of MSC with OSC may lead to improvedi@enance of the model.
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INTRODUCTION

Near Infrared Spectroscopy (NIRS), along with multivarizagbration, are
being increasingly used to infer properties of the analytsannples. The aim is
to build a calibration equation to predict analytes contenta fpectra for future
samples, using some of known regression methods. Pre-processing the data before
the calibration is often the first step employed in ordeedoice the effects which are
not related to the parameters of interest. For Niectra of granular samples,
scattering of radiation and differences in spectrosqugit length, caused by particle
size distribution, often constitute the major paeftthe variation. Thus, signal
correction of NIR spectra is a quite wide topidrofestigation that includes different
approaches developed to do this. Commonly usechalt@licative signal correction
(MSC) [3,5,11], standard normal variate (SNV) [3,1first and further derivative
filtering, Fourier transformation, the Savitzky-@glsmoothing filtering [12,13].

It should be noted that it has been difficult to devedopignal correction
method to improve the calibration model in general. Therefore, from the
viewpoint of a given modelling task, it is desirable to tryadént variants of data
correction and a few regression methods for a best variatfiteafiodel to be
selected.. The pre-treatment methods mentioned above may be appl#td for
which there are no reference measurements. When reference ealgg they
can be used to help the choice of the pre-treatment way, sonllgad minimum
of relevant information included in the spectra can be removedoithegonal
signal correction (OSC), proposed by Wadd al. [18], is a relatively new
technique which separates strong structured (i.e. systewatia)ion in X-matrix
that is not correlated to the response Y-vector or matrix. To, dateeral
algorithms for OSC as a filtering procedure to the data have diseussed
[2,4,14-17]. In this paper Trygg and Wold’s proposal [15] will be useddfe-
processing the spectra matrix.

The OSC method is usually used together with a regressidrodyesuch as
partial lest squares (PLS) or principal component regression)(R&€Ruild the
calibration model. In this report we will compare the predictivetasliof regular
PLS regression models for original data and when the data haveleeteated
with MSC and OSC methods.

MATERIAL AND METHODS

In this study the set of data consisted of NIR spectra coming 69 samples
of rapeseed meal. Reference methods determined the concentratiore of
constituents: dry mass, protein, oil, ash and fibre. (For more sistsl accom-
panying paper by Jankowsttial. [7]).
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PLS has been found to be the most popular regression method foanatii
data. The theoretical basis for PLS has been widely descrilhiéerature and can
be found for example in Refs. [6,9,11]. PLS triedind a relationship between the
latent structure in spectra set, X, and the latent steugtuesponses, Y. It is carried
out by finding specific directions in data spades so-called latent variables, and
determining some new vectors called loadings antescdwo groups of loadings
and scores are under investigation; one group for thetdxmahey are commonly
called loadings P and scores T, and another gmulg fnatrix, denoted Q and U,
respectively. Loadings give information about tHatrenship between the original
variables directions and the latent variables tbas in data space. Scores are the
projections of the samples (meant as points inatsberi data space) on the latent
variables directions. Each score vector has a sjoreling loading vector. The
objective of PLS is to maximize covariance betwdenfirst PLS score vector of
the data X and the score vector of the response$p\o this one estimates the
PLS weights (W) for X, and then calculates the esdslocks for X and Y. The
same is then performed for subsequent scores sector

In practical use of modelling by latent variables methsdsh as PLS, first of
all the number of significant latent variables (components}dhés determined
for each calibration model. The cross-validation approach prowidesy reliable
way for this [19]. Validation means a model testing on a dattnatehas not been
used in the development of the model. In cross-validation, the garteof the
data are used in two different roles - once in model making, once in moded.testi
A number of alternations is performed accordingly to some pations schemes
and then the root mean square error of cross-validation BRM¥ for all models
with different dimensions is calculated. It is commonly acceptatithe number
of PLS components giving a minimum RMSECYV is the proper numbethéor
model that gives optimal prediction. Additionally, regressiomgumiistic is often
based on other statistical parameters used in such analysisoffiall on the
coefficient of multiple determination €R (For more complete review the reader
is referred to Ref. [1]). Besides, the proper number of PLS commonantbe
inferred based on the analysis of cumulative variance explainédcind Y block
matrices. From the viewpoint of modelling efficiency, theséavaes in the first
few components should be as large as possible to provide tHacsatis model.

In some situations, the PLS model captures a very large ambMrvariance in

the first component and only a low variance on treglipted Y-value. When more
components are calculated, the model improves gloahd finally it is too
complicated. In these cases applying OSC coulcelpguh The main goal of OSC is

to capture Y-orthogonal variation in X within a Ited number of orthogonal scores
(Toy) and loadings (R). Filtered data are obtained after iterative removal of the
first 2-3 (usually) orthogonal components, as follows
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X OsC = X - z Tortho |:IP(:—rtho (1)

The suggested number of orthogonal components is generic. Thetreaexiable
risk of overfitting the estimated model if too many OSC components are rémove
This is the first problem encountered with OSC application, begigppale cones-
quence of inaccurate predictor values and thereby removing seleant,
systematic variation in X and leaving only weakly coredainformation for the
final calibrations. Trygg and Wold [15] introduce two alternatplots as good
indicative measures of the correct number of orthogonal compormenidract.
Such plots will be described further on in this paper.

Different variants of OSC differ in the way they estimtite orthogonal scores
and therefore do not give a unique solution. It is common pradaiicapply
principal component analysis (PCA) in order to calculate thi@ogonal scores
[8]. PCA is a basic tool in analysis of multivariate datarina¢ (see e.g. Refs [9-
11]). The aim of this method is to decompose X into a limitedbaurof scores
(T) and loadings (P) vectors, plus a residual matrix (E)

X=>TP' +E (2)

In PCA, the loadings and scores have the same meaning as ihuPli$ so-
called principal components are used instead of latent variables.

The original approach presented by Wold et al. [18] uses the fost sector
of X matrix calculated by PCA as a starting score vecttirogonal to Y,Tox.
This vector is then orthogonalized to Y in iterative way uotihvergence is
reached. In each iteration, a PLS model is calculated toastiweights, W,
and to make product X-\W as close to J; as possible. When a suitable Y-
orthogonal T, is found, a loading vector,P is calculated. The OSC corrected
matrix is then found according to expression (1). For additional attadg
components the correction is performed by repeating the steps as below.

The approach proposed by Trygg and Wold [15] feestks for a matrix W,
whose columns in the initial stage are loading wisigf the regular PLS model.
Next, the suitable vector of weights, ,Wis calculated and the score vector
orthogonal to Y, T;;, corresponding to these weights, accounts for as rarébility
in X as possible. The resulting vectors are thexd uis the same way as described
above. This variant of OSC is focused solely on ehaimplification and impro-
vement of interpretation, which is done by removowdy this part of irrelevant
variation that creates problems for the PLS moRlielreover, as a rule, the total
number of the final PLS components is reduced éytimber of OSC components.
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RESULTS

Three modified spectra sets have been prepared for the ewpomdelling
in addition to the original data set of rapeseed meal spectrafirfhef the
modified sets consists of MSC pre-processed spectra. The semmdrsists of
OSC corrected spectra and the last one was obtasieg OSC followed by MSC
(MSC+OSC). In all cases mean centring has beenprado data modelling.

To test the performance of the OSC pre-processing, the PLS modelling has been
made for all prepared data sets. Table 1 shows the percentagenofative
variance captured by models for spectra, X, and oil as prediatéble Y. Bold
figures in the Table help to follow how particular methods forguoeessing of
the data influence the cumulative variance in Y space.ntbsaseen that for
original data the model with only one PLS component accounts ¥eryalow
percentage of Y-variance. MSC pre-processing improves the modetjlbless
than 20% of the variance is explained. The OSC method, after irmmoxe
orthogonal component for this data set, gives calibration model witkitantially
better predictive ability. Note that the PLS model builtM&C+OSC corrected
data captures the largest amount of Y variance in the first PLBarant.

Tablel. Percentage of cumulative variance captured byirb&el for X and Y data space, where Y is
oil content, when different pre-processing metrarésused. Bold figures are explained in the text

Latent Original MSC 0OSsC MSC + OSC
variable X Y X Y X Y X Y
1 92.3 3.1 82.3 17.7 77.8 32.2 65.8 70.9
2 99.0 32.2 90.9 70.9 94.5 54.8 84.8 954
3 99.8 54.8 96.0 95.4 97.6 90.0 93.4 97.7
4 99.9 90.9 98.3 97.7 98.7 96.2 96.7 98.1

Figure 1 depicts the calculated RMSECYV values versus the mwhB&S com-
ponents obtained for spectra sets prepared with all the procesres, oil
content is predicted. It can be seen that for the originalttetaignificant PLS
model requires 13 components. After applying MSC, the number decreases to 12.
Application of only the OSC method prior to PLS modelling when 3 odhaly
components are being removed yields 10 components. It is, howewgh w
noting that the resulting number of the final PLS componentsdiscesl by 3,
which is the number of significant orthogonal components. As it caedre from
Figurel, the simplest model was obtained when orthogonal componemts we
calculated for MSC pre-processed spectra and then removedsfrectral data
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(MSC+0OSC approach). The solution given by MSC+OSC pre-progessi
advantageous over the OSC transformation in two aspects. thiestnodel
simplification is gained, second - the lowering of RMSECV valak=arly visible
in Figure 1, results in better prediction ability of such models.

04 w
— original
— MSC
— OSC
0.35F — MSC+0SC

RMSECV
o
w

0.25

0.2

2 4 6 8 10 12 14
No of PLS component

Fig. 1. RMSECV values of oil prediction using PLS modethwl-15 components after different
approaches of the pre-processing have been applied

The number of three orthogonal components for modelling of oil content
results from Figure 2. This plot, suggested by Trygg and Wold Etejws the
ratio |W,,||/|P| versus the number of orthogonal components. This ratio becomes
close to zero if no orthogonal information remains in X matrix.ddethe index
of the last orthogonal component before the plot flattens is assumed to bkesuita
It can be seen from Figure 2 that it happens for three orthogonal components.

Alternatively, the authors propose to follow thation between X and Y by
looking at graphs of the Y scores, U, against thecites, T, after removing every
orthogonal component. These graphs, the so-calledcbreplots, exemplify the
enhancement of correlation in the first PLS compomdter removing from X the
part of information that is not correlated with he correct number of orthogonal
components is assumed to be found when the patt¢he set of the points became
linear. Such diagnostic plots are shown in Figur#t 8an be seen that if only one
orthogonal component is removed the plot does mmivamuch correlation, while
removal of three orthogonal components makes thgerdience clearly linear.
The removal of four OSC components makes no ndiieéaprovement.
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Fig. 2. Plot of the ratioHW0 ‘/Hq‘versus the number of orthogonal components. Thgggfisant

rlho‘
components are indicated to be removed

In a similar way the analyses for the remaining constitueave been made. The
numbers of significant PLS components determined from cross-vatidate

listed in Table 2. MSC and OSC correction methods show quiteasiatllity in

model simplification. It should be noticed that for ash and fibre aneobserve a
substantial simplification of the calibration models when MOSE€ approach is
applied. The correct number of orthogonal components were obtained based on
the ratio |w,,.|/[P| plot and t-uscore plots, as illustrated earlier for oil

constituent. Since Trygg and Wold's [15] OSC approach is ietbid simplify

the model, only the numbers of orthogonal components to be removed in each
case can be inferred directly from Table 2 by comparing Hiees of PLS
components for original data with those for OSC pre-processed odaksy
comparing the values of PLS components for MSC pre-processedittathose
obtained when MSC+OSC pre-processing was applied.
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Fig. 3. t-u score plots for the first PLS component after

pesgive removal of 1,2,3 and

4 orthogonal components from MSC pre-processedrspeata for modelling of oil content

Table 2. Numbers of significant PLS components determinganf minimum of RMSECV for
models of each constituent

Component Original MSC oscC MSC+0OSC
Dry mass 12 10 10 9
Protein 5 5 2 3

Oil 13 12 10 9

Ash 18 10 15 8

Fibre 9 6 6 4

Once the optimum numbers of the PLS components had been estithated,
regular PLS calibrations with the determination of the sttaéil parameters were
made. The predictive ability of the calibration was estmah terms of the
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RMSECYV (as low as possible) and thé @s high as possible) obtained from
cross-validation. Figure 4 shows the RMSECV arfdvRues for all analysed
constituents after different approaches of pre-processing have beied.appl

Hl original
Il vSC

[ osc 0.8F
[ Msc+osc ||

0.6-

RMSECV
R?2

0.4r

0.2f

dry mass proteﬁ oil ash fibre 0 dryma;s proteiﬁ oil ash fibre

Fig. 4. The RMSECV and Rvalues for all calculated models

78 ‘ ‘ Ash ‘ ‘ It can be seen that the best models
for all constituents, except ash, were
obtained from spectra pre-treated

N
)

iﬁ”f &~ | with MSC as well as when MSC
l R e | was  combined with OSC
37 <o 1 (MSC+0OSC). This result is not

surprising since OSC algorithm, in
66l " . | Trygg and Wold's variant, is focused
C solely on the PLS model
04 B8 B a4 T simplification and therefore the
Fig. 5. The predicted versus measured (referenceg?t”_nated parameters ar_e finally
values for ash content eguivalent to those obtained by
MSC. The only diffe-rence is the
number of PLS com-ponents to be used. For ash, the modelling by P&S giv
quite different results. The only method providing the most favourabdenesers
and the most simple model is OSC. In this case OSC transfomesgems to
work more efficiently if it is carried out on the ginal data. Moreover, if to follow
R? value it can be concluded that PLS regressiorttisr constituent has some
prediction problem because only less than 70% efvifwriance of the response
variable Y is explained by the regression relatigmsThis can be more directly seen
from Figure 5, where rather weak correlation betwpesdicted and measured
values exists.
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DISCUSSION AND CONCLUSIONS

In this paper we have illustrated on NIR rapeseed meal sgdathow the
orthogonal signal correction of the spectra applied prior to multivaridbeatadn
improved the effectiveness of PLS method. The use of a conventimmacttion
method such as MSC does not require reference values as OS®Guldks, use
of reference values allows to focus the pre-treatment of ttaelgaorthogonal
correction on modelling the Y values. In practice this idea caownter some
problems, because neither accuracy nor precision of the refemFasurements
are examined. Beside, overfitting of the estimated modéilely to be achieved
when too many orthogonal components are removed.

In the literature, the OSC has become an alternative, indepk prepro-
cessing method which determines and removes from spectral dhtapért of
information which is not correlated with Y. However, MSC reduttee additive
and multiplicative effects on individual spectra which conoenfdifferent sample
granulations. This information is not simply related with Bat with optical
phenomena accompanying the scattering of light. Thus, OSC as weB@sridy
give more or less similar results. How much the resultsiardar depends on the
case. For the data under investigation, the calibration mddgikayed a viable
improvement if OSC approach was combined with MS&ppocessing. However, in
one case (for ash), the conventional approach that uses onlp@$tocessing
appeared to be more efficient, although not satisfactory results haen
obtained. This is probably due to various reasons, like low range dfthhenced
ash values in the investigated data.

Finally, one can conclude that the proposed OSC pre-processing thiger
advantage of at least simplification of the PLS model, and inesoases
combination with MSC may lead to improved performance of the model. In
general, it is difficult to predict in advance the consequermresdlibration task
of applying the combined approach (MSC+OSC). Which approach is to be
recommended — OSC or MSC+0OSC - depends both upon the data and the
constituent to be analysed. Further investigations with athtx are required to
determine the actual merit of the combined MSC and OSC pre-processing.
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ORTOGONALNA KOREKCJA SYGNALU W METODZIE PLS
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Streszczenie. Typowym zadaniem w chemometrii jestacowanie liniowe] zak@osci
pomiedzy dwoma zbiorami zmiennych: zbiorem widm, X, iakem koncentracji pewnych sktad-
nikdw, Y. Jedm z najpowszechniej stosowanych metod regresji festoda czsciowych naj-
mniejszych kwadratéw (partial least squares — PlSjstematyczne zmiany obecne w X, nie
skorelowane ze zmianami w Y, mpgvptywat negatywnie na interpretgcimnodelu PLS. Taka
sytuacja mee wystpi¢ w przypadku, gdy zmienne X reprezentuyartaci absorbancji lub
reflektancji mierzone dla bardzo wielu (setek) dkaj fal, a pomiary s np. obarczone zabu-
rzeniami pochodymi z r&nych zrédet, nie majcych zwazku z interesujca nas informagj.

W takim przypadku, zaproponowana ostatnio metodagonalnej korekcji sygnatu (OSC) ue
okazd& sie pomocha. Metoda ta polega na dleaiu, a nagjpnie usuniciu z macierzy, widm X tej
czesci informaciji, ktéra jest ortogonalna do Y (tj. njest skorelowana z Y). Celem pracy jest
zilustrowanie meliwosci metody OSC, w zastosowaniu do widimuty rzepakowej zarejestro-
wanych metod NIR, poprzez poréwnanie wynikow otrzymanych prastpsowaniu metody PLS
dla danych oryginalnych oraz danych po korekcjiadgetMSC (multiplicative scatter correction)
oraz OSC. Otrzymane wyniki pozwalajtwierdzé, ze metoda OSC upraszcza model kalibracyjny,
a gdy jest stosowana do widm po w&rejszej korekcji MSC obserwuje esiw pewnych
przypadkach réwniepoprave statystycznych parametrow charaktergzygh model.

Stowa kluczowe: chemometria, NIRS (spektroskopiski#j podczerwieni)sruta rzepakowa



